Tiny Triplet Finder

A Pattern Recognition Scheme for

Large Curvature Circular Tracks

and Its FPGA Implementation Using Hash Sorter

Jinyuan Wu Fermilab Sept. 2004

Tiny Triplet Finder

Jinyuan Wu,

Z. Shi, M. Wang, H. Garcia and E. Gottschalk

For BTeV Collaboration

Fermi National Accelerator Laboratory Sept. 2004

Hits, Hit Data & Triplets (in BTeV)

- Hit data come out of the detector planes in random order.
- Hit data from 3 planes generated by same particle tracks are organized together to form triplets.

Triplet Finding

Plane B

Plane A

- Three data items must satisfy the condition: $x_A + x_C = 2 x_B$.
- A total of n³ combinations must be checked (e.g. 5x5x5=125).
- Three layers of loops if the process is implemented in software.
- Large silicon resource may be needed without careful

planning: $O(N^2)$

Tiny? Yes, Tiny! – Logic Cell Usage:

CAM, Hough Transform etc., $O(N^2)$

Tiny Triplet Finder O(N*logN)

TTF Operations

Phase II: Making Match (More...)

Bit Array/Shifters

TTF Operations

Phase II: Making Match (and More...)

Tiny Triplet Finder Operations

- Step 1:
 - -Fill the bit arrays.
- Step 2:
 - -Shift the bit array and check for bit-wise coincident.
- Step 3:
 - -There is no step 3.

Block Diagram

Schematics

Logic Cell Usage

- Both 64- and 128bit TTF designs fit \$100 FPGA comfortably.
- A simple 64-bit Hough transform design is shown for scale.
- A \$1200 FPGA is shown for scale.

Simulation

Other Applications of TTF

- There are other applications using same algorithm as TTF.
- Examples:
 - Wire chambers.
 - Time of flight counters.
 - -GEM/MICROMEGAS

Other Applications: Wire Chambers

Other Applications: TOF

Other Applications: GEM/MICROMEGAS

Why Doing Something Tiny? Instead of Waiting for Moore's Law?

- Today, we hear Moore's law more often than Maxwell Equations.
- But in FPGA world, kilo- logic cells are still not so cheap A quick argument.
- Consider FFT (O(n²)->O(n*logn)), 40 years ago:
 - If it were not developed, it would not be developed today.
 - Fortunately it was developed and we still use it today even though it is not necessary in many places.
 - We fully respect our grandparents for developing FFT.
- Now Tiny Triplet Finder (O(N²)->O(N*logN)):
 - If we do not developed it, it will not be developed in the future.
 - This piece of human knowledge will not ever exist.
 - Our grandchildren may say we are retarded What's reputation of scientists of our generation?

A Pattern Recognition Scheme for Large Curvature Circular Tracks and Its FPGA Implementation Using Hash Sorter

Jinyuan Wu and Z. Shi Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

A Large Curvature Track

- A soft track hits large ϕ region.
 - A global algorithm is better suited.
- The "high-p_T" approximation is not valid globally.
 - Exact track equation is needed.

$$r = 2R\sin(\phi - \alpha_0)$$

Measure the tangent angle..

$$r = 2R(\phi - \alpha_0)$$

 ϕ

 α_0

R

Parameter:

Radius of

curvature

$$\alpha_0 = 2\phi - \alpha$$

$$\frac{r}{2R} = \sin(\alpha - \phi)$$

Tangent Angle Measurements

- There are various techniques to measure the tangent angle of the track segment (or "doublet", or "cluster").
- Sometimes extra "ghost" segments may exist.
- The ghost segments may be resolved in track recognition process later.

An Example of Track Recognition: Event

We explain
 the track
 recognition
 process using
 this 20-track
 example.

An Example of Track Recognition: Hits

An Example of Track Recognition: Doublets

An Example of Track Recognition: Histogram

Two track parameters can be calculated for each doublet.

Sometimes they are stored in clusters.

Doublets from same track are entered into same bin, (since they have same track parameters).

1 11 11

A 2-D histogram is booked.

An Example of Track Recognition: Clustering

An Example of Track Recognition: Tracks

$$\alpha_0 = 2\phi - \alpha$$

$$c_0 = \frac{25cm}{R} = \frac{50cm}{r} \sin(\alpha - \phi)$$

FPGA Block Diagram

Simulation Results

2000

750

1000

It still works at 1000 tracks/event

Without Full Track Recognition

$$\alpha_0 = 2\phi - \alpha$$

$$c_0 = \frac{25cm}{R} = \frac{50cm}{r} \sin(\alpha - \phi)$$

- Two track parameters can be calculated for each doublet.
- Useful trigger primitives can be found without full track recognition.
- For example...

Example: Finding "Soft Jets"

- A simulated event with 200 tracks.
- Flat distributions.
- Min. R = 55 cm

- 16 soft tracks are added.
- They are grouped in 2 small initial angle regions, i.e., 2 "soft jets".

Soft Tracks?

- Can we always anticipate high-p_T signatures?
 - Probably not.
- Do soft tracks carry useful information?
 - Maybe.
- In strong magnetic fields, (e.g. 4T in CMS), highp_T tracks look soft.
- Isn't it too hard to use soft tracks in trigger stage?
 - It was, but now it is not too hard. ☺

The End

Thanks

Pentlet Finding

Beyond Just Bit-wise AND

Plane A Plane B Plane C Plane D Plane E

- Use 4 bit arrays.
- There are 3 constraints total.
- More constraints
 help to eliminating
 fake tracks.
- It is possible to use bit-wise majority logic (such as 3-out-of-4) to accommodate detector inefficiency issues.

Multiple Hits & Triplets

Keep Them All

- Each bin may be filled with more than one hits.
- Hits data are kept in hash sorters allowing multiple hits per bin.
- There are may be more than one match in each bit-wise AND operation.
- They are all sent out, one-by-one, to the later stages for fine cut and arbitration processes.

Boundary Issues

Beyond Just Bit-wise AND

- When the track hits near the boundary of a bin, simple bit-wise AND may miss the triplet.
- The bit-wise OR-AND logic will cover the boundary.
- The logic cells in most of today's FPGA's have 4 inputs. So the ORAND bit-wise logic doesn't increase any resource usage.

Tiny Triplet Finder (Animation)

