A flexible stand-alone testbench for facilitating system tests of the CMS Preshower

Paschalis Vichoudis1,2, Serge Reynaud1, David Barney1, Wojciech Bialas1, Georgios Sidiropoulos2, Apollo Go3, Yves Beaumont1, Jacques Domeniconi1

1 CERN, Geneva, Switzerland
2 University of Ioannina, Ioannina, Greece
3 National Central University, Chung-Li, Taiwan
• Introduction
• Testbench
 – Motivation
 – Implementation
 – Features
 – Software
 – System Tests
 – Other Uses
• Summary/Conclusions
INTRODUCTION – CMS Preshower

LECC 2004, Boston 13-17 September

Paschalis Vichoudis, CERN PH-CMA
INTRODUCTION – Preshower Architecture

on-detector

Readout Path

Data Concentrator Card

VME module

Subdetector Event Builder

off-detector

Clock & Control System

VME module

TTCvi

VME module

Front End Control ASICs

DCU

CCU

Front End Readout ASICs

PACE

ADC

K chip

Slow Control & Fast Timing Signals

PC

Re

Clk

T1

Control Path

I

V

PC

Subdetector Event Builder

Data Concentrator Card

VME module

Slow Control

Fast Timing

LECC 2004, Boston 13-17 September

Paschalis Vichoudis, CERN PH-CMA
INTRODUCTION - On-detector electronics

μmodule

System board
Main Purpose: Evaluation of system board

Requirements
- Clock & control system
- Flexible Trigger Generation system
- Readout system

Availability (Q3 2003)
- Clock & control system: ✔ FEC
- Flexible Trigger Generation system: ✗
- Readout system: ✗
TESTBENCH - Features (1/2)

- Triggers Unit
 - Programmable trigger burst generation
 - Patterns up to 1000 triggers
 - Triggers in Poisson distribution at 100KHz
 - Multiple trigger format (TTC, T1, CLK+T1)
 - External Trigger

- Readout Unit
 - 4 Optical inputs
 - Embedded gigabit deserializers
 - High speed readout via S-Link64

- Control Unit
 - Electrical/optical FEC functionality [FEC firmware/software provided by its authors]
 - Pseudo-Control (CLK, T1, i2c lines)
 - PC Interface via USB

- Micro-controller
- S-Link64 transmitter mezzanine card

- USB interface
- Pseudo-control
Programmable Trigger Generation

- Generate bursts of up to 1000 triggers - specifying the time (clock cycles) between each trigger
- Each “trigger” is actually two pulses
 - Calib – telling the PACE to generate an internal electronic injection signal
 - LV1 – sent <latency> clocks after the Calibration pulse
TESTBENCH - Software (1/2)

Control Program

Load Configuration Save Configuration

Register Status after Write

ColInjReg - Tn
Trigger Latency
Enable Trigger
Disable trigger
ReSynch period
Trigger
External
Control Register
CalPulse Length (clocks)
Pulse Mode
0: 1 RS, 1 Cal burst
PACE Address
Mux Freq
20 MHz
Reset Flex
Setup FLEX
Start Running

Min time to display
Update graph
Max time to display

LECC 2004, Boston 13-17 September
Paschalis Vichoudis, CERN PH-CMA
Global Preshower System-Board Control Panel

Update Delta registers

Update PACE-AM registers

Data Packet Decoder

K-chip Register

LECC 2004, Boston 13-17 September

Paschalis Vichoudis, CERN PH-CMA
Tests to be done

- Conclude Noise studies
- Behaviour under high trigger rate

Control Chain:

- Control + Data
- ADC
- K
- ADC
- DOH
- CCU
- DCU
- VDTR
- LVDSbuff
- QPLL
- GOH
- PACE1
- PACE2
- PACE3
- PACE4
- PACE5
- PACE6
- PACE7
- PACE8

Noise Measurements:

- Optical
- FEC

Design Verification:

- TESTBENCH – System Tests
- Control Chain
 - Clock/Trigger/Reset Distribution
 - I2C Transactions
 - Redundancy
 - Pulse Reproduction
 - Noise Measurements

Other Elements:

- 2 Readout
- V, I
- DCU
- PC
- V, I
- DCU
- PC
- 2 Readout
- Timing Control
- Control Unit
Production testing of system boards/micromodules Taiwan, Greece, CERN
Test beam (end of September 2004)
Prototype of CMS Preshower Data Concentrator Card, if necessary
SUMMARY

- Stand-alone PC-controlled evaluation system for Preshower on-detector electronics
- Timing, trigger and control signals & readout
- Optical interface available
- Flexible/Portable/Low Cost
- Principle production testing system for ~500 CMS Preshower system boards & ~4300 PACE hybrids in Taiwan, Greece and CERN
- Useful (?) for evaluating or production testing of other detector electronics systems, for LHC and beyond