The Muon Sorter in the CMS
Drift Tubes Regional Trigger

G.M. Dallavalle, Luigi Guiducci, A. Montanari, G. Pellegrini
INFN Bologna

10th Workshop on Electronics for LHC and Future Experiments
CMS Drift Tubes Detectors
DT Regional Trigger

1xBarrel Sorter
In: max 24 tracks from 12 Wedge Sorters
Out: 4 “best” tracks

12xWedge Sorter
In: max 12 tracks from 6 φ Track-Finder of a wedge
Out: 2 “best” tracks

Muon Sorter
Hardware - location

- DT Regional trigger racks in underground counting room USC55
- No radiation environment, easy maintenance access
 → Use of programmable devices
- 3 racks, with 6 crates for TF and WS, 1 crate for BS
 → All boards are VME-9U J1 + custom backplane, 400 mm depth

(2 WS / crate) x 6 crates

~ 5 m (≤ 2 BX)
WS requirements: ghost busting

- Adiacent PHTFs can build the same muon track:

 - Single muon events can appear as dimuon events
 - Goal: keep this fake rate below 1% at Muon Sorter end
 - WS compares the locations of track segments used by different PHTF, and the fake tracks found are cleared
WS requirements: sorting

• Keep high efficiency on dimuon events:
 - Sort 2 out of 12 candidates from the wedge, in 2 BX
 - Sorting based on track quality (3 bits) and \(P_T \) (5 bits)
 \[\rightarrow \text{Rank based on 8 bits/track} \quad \rightarrow \text{HEAVY TASK} \]

• Full track information is 31 bits (qual, \(P_T \), \(\phi \), \(\eta \), q, address)
 \[\rightarrow \text{Algorithm uses about } 450 \text{ I/Os} \quad \rightarrow \text{LARGE DEVICE} \]

\[\text{Wedge Sorter latency: 2 BX} \]
WS main FPGA design

- Design is developed in VHDL
- Vendor dependent libraries usage is minimized, VHDL is synthetized on different vendors FPGAs
- Fit all logic on a single device if possible

After simulations

- Design fits one APEX20K400 from Altera, 672 pins FineLineBGA
- The sorter core latency is about 21 ns
- The max operating frequency is about 48 MHz
- 25% of resources is used, about 100k equivalent logic gates
WS prototype board

VME 9U, 400 mm depth, 10 layers

- Input from ETTF (84 bits)
- Input from PHTFs (292 bits)
- Output to BS (62 LVDS pairs)
- Clock buffer & delay line
- LVDS drivers
- Main FPGA
- GTL+ transceivers
- Switching regulators
- VME interface
- JTAG
- VME J1
- Switching regulators
- 1.5V
- 2.5V
- 3.3V
- 5.0V
- 1.5V

GTL+ transceivers
LVDS drivers
Main FPGA
Clock buffer & delay line
Switching regulators
VME interface
JTAG
VME J1
Input from PHTFs (292 bits)
Output to BS (62 LVDS pairs)
Input from ETTF (84 bits)
WS board features

- Routing out of Apex20K in FineLineBGA675 package is optimized fixing pinout before synthesis of VHDL into device logic
- 3 clock sources (backplane, front panel, internal); phase adjust through VME
- JTAG chain through FPGAs and configuration device, for configuration and debugging; access through on-board connector or VME interface
- Private parallel and JTAG interfaces between main FPGA and VME chip
 - VME access to configuration, test and snap registers
- Series termination on all I/O and clock lines
WS test adapter boards

Adapter boards were designed to provide *WS GTL+ input signals* and to read back *LVDS outputs* using general purpose I/O boards (*Pattern Units*)

- **VME**
- **TTL**
- **GTL+**
- **Shielded flat cables (VME)**
- **128 I/O**
- **up to 100 MHz**

LECC 2004 – Boston – September 13th

L. Guiducci – INFN Bologna

INFN

Istituto Nazionale di Fisica Nucleare
WS test setup

VME pattern generator and readout @ 40 MHz (Pattern Units)

TTL to GTL+ adapter board

LVDS to TTL adapter board

VME flexible extender

TTL to GTL+ adapter board

10 m twisted pair cable
WS standalone static tests

- Switching voltage regulators are tuned, no noise on voltage levels
- JTAG programming of VME interface and main FPGA as a cycling multiplexer
- Access to VME chip with R/W operations
- Check of BGA chip soldering:
 - Set static patterns on WS inputs, read outputs and check
 - Cross check with JTAG sampling
 - 15 unconnected pins on first prototype!

RX & microscope pictures to check FLBGA soldering
WS standalone dynamic tests

- Tune series resistors sampling signals waveforms at traces end:

 - Measure timings and set clock phases windows
 - Inject 40 MHz signals and read back after 10 m of LVDS cable transmission: checked to BER < 10^{-12}
 - Check cross-talk among lines on board with several switching patterns: OK

✓ Board validated, production with no modifications (tender phase)
Barrel Sorter requirements and approach

TASKS: BS algorithm is similar to WS one BUT
- 24 input tracks → much bigger I/O (~ 870)
- → complex ghost busting
- → sorting 4 out of 24 (heavy task)

Design approach similar to WS
- All functionalities on one big FPGA
 - (Altera Stratix EP1S60/EP2S130, 1508 fBGA)
- 9U, 400 mm VME board
- Latency: 3 BX for ghost-busting + sorting&multiplexing

with some main different features
- Inputs from cable (LVDS) through connectors on board top
- Main FPGA on mezzanine board
BS main chip design

- Notice that (sorting 4 out of 24) \(\gg 2 \times (\text{sorting 2 out of 12}) \) !!!
 - In the fully-parallel sorting algorithm used in WS, logic usage and routing congestion increase as very steep functions of the number of input words
- New FPGAs work better with fine segmented pipelines

✓ BS uses sequentially 4 x 1-out-of-24 sorters in pipeline

75 ns
Summary

• The Muon Sorter in Drift Tubes Regional Trigger selects and forwards to the Global Muon Trigger up to 4 muon per event

• Two boards, WS and BS, have to fulfil the requirements
 - Ghost suppression down to satisfactory low rate
 - Sorting of tracks within limited latency

• WS board prototype was designed, built and tested in 2003-2004
 - Design goals achieved with single big FPGA
 - The prototype worked well: exhaustive stand-alone test & integrated test OK
 ✓ Production in tender phase; boards delivery: exp. end of october
 - It will be used in the next test beam to acquire φ-TF data

• BS is being designed, relying in new FPGA tech. and new chip design strategy