Radiation Effects and Mitigation Strategies for modern FPGAs

10th annual workshop for LHC and Future experiments

Los Alamos National Laboratory, USA
Introduction

- FPGA benefits in instrumentation design
 - High density logic
 - User configurable
 - SRAM and antifuse technologies popular
- Reliability issues in radiation environments
 - Latchup
 - Single event upsets (SEUs)
 - Multiple bit upsets (MBUs)
Introduction

• Fault mitigation strategies
 – Scrubbing SRAM devices (Xilinx specific)
 • Periodic readback and verification
 • Some limits on readback
 – RAM contention
 – Half latch constant generation
 – Fault tolerant design techniques
 • Triple module redundancy (TMR)
 – Entire design vs. persistent logic
 – Effectiveness in the face of MBUs difficult to quantify
FPGA Architecture (Xilinx Vertex)

- **SRAM based devices**
 - RAM bits control configuration
 - Logic definition
 - Signal routing

- **Xilinx Vertex family**
 - Configurable logic blocks (CLB)
 - Split into two slices
 - Look-up tables (LUT)s define logic
 - Flip flops and carry generation
 - Routing matrix
 - Pass transistor and buffered connections between CLBs
 - Generous supply of global and local interconnect
FPGA Architecture (Xilinx Vertex)

- **Vertex family (continued)**
 - Block RAM
 - 4K bit blocks
 - Configurable in various widths
 - I/O blocks (IOB)
 - Many I/O standards supported
 - I/O registers
FPGA Architecture (Xilinx Vertex)

- RAM utilization
 - Configuration dominates
 - Sparsely utilized
 - Rarely more than 30%
 - Even in designs where logic is fully utilized
 - Still dominates by an order of magnitude

Virtex XCV1000 memory Utilization

<table>
<thead>
<tr>
<th>Memory Type</th>
<th># of bits</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>5,810,048</td>
<td>97.4</td>
</tr>
<tr>
<td>Block RAM</td>
<td>131,072</td>
<td>2.2</td>
</tr>
<tr>
<td>CLB flip-flops</td>
<td>26,112</td>
<td>0.4</td>
</tr>
</tbody>
</table>
FPGA Architecture (Xilinx Vertex)

- Half-latch or weak keepers
 - Provide constants
 - Save logic resources
 - Used throughout device
 - Subject to SEU upset
 - Can reset over time
 - Not observable
 - Not defined by configuration bits
 - Reinitialized as part of device initialization
 - Full reconfiguration required
Failure Modes

• Latchup
 – Parasitic bipolar transistors
 • Created as a by product of CMOS fab techniques
 • When activated, short power to ground
 – Can burn out the device
 – Epitaxial processing eliminates parasitics
 • Eliminates latchup completely
 – Lower Vcc decreases vulnerability
 • Bipolar transistors barely forward biased
 – Xilinx V2 (1.5 Vcc) is latchup immune to 160MeV
Failure Modes

• Single event upsets (SEUs)
 – Logic Content
 • Usually manifested as a “glitch”
 • Can be persistent in a feedback element
 – Counter or ALU
 – Logic Configuration
 • Altered logic definition
 • Always persistent
 – Usually results in undesirable operation
 – Routing
 • Statistically most probable
 • Always persistent
 – Least likely to result in logic failure
Failure Modes

• Single event functional interrupts
 – Power on reset or other global function
 • Usually results in immediate functional interrupt
 – Device needs to be reconfigured
 – JTAG or other configuration interface
 • Can inhibit or corrupt readback operations
 – Device reset required to restore test functionality

• Multiple bit upsets (MBUs)
 – Multiple configuration bits altered
 • Can defeat fault tolerant design (TMR)
Mitigation Techniques

• Scrubbing
 – Readback and verification of configuration
 • Sets limits on duration of upsets
 – Partial configuration
 • Supported by Vertex family
 • Allows fine grained reconfiguration
 • Does not reset entire device
 – Allows user logic to continue to function
 – Complete reconfiguration
 • Required after SEFI
 • No user functionality for the duration of reconfiguration
Triple Module Redundancy

- Simple triple module redundancy
 - Three copies of user logic
 - Two of three voting on output
 - Counter example
 - Simple TMR handles faults
 - Cannot resynchronize on the fly
 - Requires logic reset after repair
 - OK for stateless logic
Triple Module Redundancy

- Feedback TMR
 - Three copies of user logic
 - State feedback from voter
 - Counter example
 - Handles faults
 - Resynchronizes
 - Operational through repair
 - Speed penalty due to feedback
 - Desirable for state based logic
Triple Module Redundancy

• Feedback TMR can be SEU immune
 – Must TMR clocks as well
 – Scrubbing frequency provides upset rate tolerance
 – For low SEU rates, fault probability becomes SEFI rate
 – Xilinx has automated TMR tool in beta test

• Unfortunately, MBUs also occur
 – Can defeat TMR
 – Current TMR tools do not floorplan
 – Occur .1% on vertex, up to 2% on vertexII
 – Implications still under investigation
Triple Module Redundancy

- TMR costs
 - Triple logic utilization
 - At least 3x logic utilization
 - Need to floorplan for MBU resistance
 - Also for operation during repair
 - No fully automated tool at present
 - Triple power consumption
 - SRAM devices already inefficient
 - Slower operation
 - Feedback TMR inherently slower
 - Worse when floorplanning requirements taken into account
Other TMR Techniques

• Selective TMR
 – Identify persistent, or state based logic
 – TMR only these sections
 • Other critical sections may also be TMRed
 – Application dependent
 – Subject of ongoing development and test
 • 90% of full TMR performance (preliminary result)
 • Much lower device utilization, power, etc
 • Automated tool in development
Other Pitfalls (virtex)

- Half-Latches
 - Unobservable failure mode
 - Requires device reinitialization to reset
 - Design tools insert automatically
 - No switch to stop software from inserting them
 - Los Alamos has developed removal tool
 - Works on completed design
 - Can fail when design is heavily utilized
 - Too memory inefficient for largest virtexII devices
Other Pitfalls (virtex)

- Block RAM has shared output register
 - Readback can collide with user logic
 - RAM cannot be verified by scrubbing
 - User logic must handle RAM verification
- Distributed RAM has shared output as well
 - Similar collision problem
- Clock delay lock loop module
 - Status bits inaccurate during upset related failures
Alternatives

• Antifuse
 – Configuration based on physical shorts
 • Invulnerable to upset
 • Cannot be altered
 – Over 90% smaller upset cross section for comparable geometry
 – Signal routing more efficient
 • Much lower power dissipation for similar device geometry
 – Lags SRAM in fabrication technology
 • Usually one generation behind
 • Latch up more of a problem than in SRAM devices
Alternatives

• Rad-hard Antifuse
 – All flip-flops TMRed in silicon
 • Unmatched reliability
 • High cost
 • Unimpressive performance
 – Feedback TMR built in
 – Usually larger geometry
 – Not available in highest densities offered by antifuse
 – Some devices even have TMRed RAM
 • Not ECC, but self correcting feedback TMR
When to Use Antifuse

• Where requirements are well known
 – Also stable over time
• Logic density does not exceed what is available
 – About 2M gates currently
• Where power consumption is critical
 – Also low noise
 • Many mixed mode designs and analog/digital front ends
When to use SRAM

- In system reprogrammability required
 - Unstable requirements
 - Desire for generic hardware
- Cost of TMR and scrubbing tolerated
 - Schedule does not allow for proper system engineering
 - NRE for TMRed hardware small compared to total system NRE
 - Fluid hardware/software functional tradeoff
Conclusion

- FPGAs can be used in elevated Radiation
 - Errors can be detected and corrected
 - Fault tolerant design can be utilized
 - TMR can produce designs virtually immune to upset
- SRAM devices are the only choice for in system reprogrammability
- Antifuse is naturally more radiation tolerant
 - A natural choice if reprogrammability not required