Integration study and first test results of the CMS Muon Barrel Alignment system

Authors:

D. Novák¹, A. Fenyvesi¹, J. Molnár¹, G. Székely¹, J. Végh¹, N. Béni², A. Kapusi², P. Raics², Zs. Szabó², Z. Szillási², Gy. L.Bencze²,³

¹ Atomki, H-4001 Debrecen, Pf. 51, Hungary
² Institute of Exp. Physics, Debrecen University, Debrecen, Hungary
³ Institute of Particle and Nuclear Physics, Budapest, Hungary and CERN, Geneva, Switzerland
Basic elements of the system

- Rigid structures (MABs, z-bars)
- Video-camera boxes (on the MABs)
- LED holders (on the chambers)
- Diagonal and Z-LED holders (on the MABs and Z-bars)
- Board computers (on the MABs)
Components of the MBA

For the precise measurement of the positions of the barrel muon chambers in the CMS detector, a Position Monitoring System was developed. It comprise:

- ~10000 LED light-sources,
- 600 active pixel sensor monochrome video cameras,
- 24 tilt and 72 temperature sensors,
- 36 PC/104 board computers and
- a master control workstation for controlling the system and collecting and analyzing the data received from the sensors and cameras.
The hierarchy of the DCS and MBA elements

DCS

MAB
Workstation

Ethernet

Board computer
Cameras
LEDs (Z + diagonal)
Tilt Sensors
Temp. & Humidity sensors

Chamber control

Barrel muon chamber minicrate
I2C
LED holders
PADC

Chamber
The LED holders
Fork calibration bench

Camera-1
Precision X-Y table
Calibration tool
Fork

Camera-2

Fiber-optical reference source
Fork calibration procedure

• The table is moved until the centroid of the given source reaches the predetermined position on the camera.

• The LED position is determined by the table movement.

• The procedure is repeated 5-times for each fiber-optical reference source (3 on both sides) and LED (6 and 4 respectively).
Test of the absolute bench precision

Since the fiber optical reference sources are always measured it is possible to test the precision of the measurement-analysis process.
Chamber calibration bench
The chamber coordinate system is attached to the corner blocks 1, 2, 3 of the bottom superlayer:

- Origin: corner 2.
- Z-axis: through corner 1.
- X-Z plane: corners 2, 3, 1.

Middle point on Corner Blocks’ two-target surface is used for this analysis.
Calibration procedure

WEB
WEB Server (Linux)

IS R
Lab. Server (Linux)
MySQL Database Server

Analysis
Analysed data from the Fork Calibration Bench DB server

Analysed data
Raw data

Chamber Calibration Bench (W98)
Stores data locally in ASCII files

Photogrammetric measurement by the Survey Group

Automatic EDITOR
Process (Java) runs on the server machine
Uses MySQL, creates COCOA descriptions and grabs results from the COCOA output

COCOA input
Analysed data
COCOA runs on the server
Fork diagnostic tool

Diagram showing the components of a fork diagnostic tool:
- Forks
- DT chamber
- Pressure sensor
- Minicrate
- I2C interface
- Serial connection

Image of the diagnostic tool with several circuit boards and cables.
The hierarchy of the DCS and MBA elements

DCS

Ethernet

MAB

Workstation

Board computer

Cameras
LEDs (Z + diagonal)
Tilt Sensors
Temp. & Humidity sensors

MAB

I2C

Barrel muon chamber minicrate

LED holders

PADC

Chamber

Chamber control
Elements on the MAB-s
The environment of the BC

Cameras

Board Computer (BC)
- Video-multiplexer
- Frame grabber (Video-digitizer)
- LED driver
- Tilt sensor interface
- Power Supply (DC-DC converter)

Core module

LEDs (MAB, Z-bar)

Tilt sensor

Low voltage

10/100 Ethernet

PC 104 bus

I2C bus

I2C

Ethernet
Tasks of the Board Computer

- read and save the pictures of the connected cameras through the FrameLocker,
- calculate the centroids of the LEDs,
- read tilt sensor data as analog input voltage,
- switch on/off z-bar LEDs and LEDs mounted on the MAB through I2C bus,
- publish services and available commands for the DIM name server,
- produce watchdog signals for the DIM name server.
The layers of the PC/104 computer

- As the BC will be placed on the CMS Barrel, it has to function in radiation and magnetic fields. Two sources of problem were identified, the Ethernet isolation transformer and the step-down DC-DC converter on the CPU board. The AMPRO board lacks DC-DC converter for the processor core, the only coil on the board is for the LCD display, which is not needed in the present application.
- The Ajeco frame locker passed both the radiation and the magnetic tests, so all the needed pieces were purchased (36 modules to be built in and 14 as reserve)
- The custom interface has to connect all the sensors around the BC to the CPU board. Temperature and humidity sensors, tilt sensors, up to 32 LEDs (Z bar, diagonal). a custom built 3×8 video multiplexer.
Conclusion

• 1200 pieces of LED holders are calibrated and delivered to CERN. The assembly of the MBA elements on the DT chambers has a good progress.

• All the necessary components on the MAB (BC, camera, proximity sensor, tilt sensor, humidity and temperature sensor) have been defined and the procurement is on the way.

• The SW integration has to be validated and updated after the final version of the BC is completed.