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@ Observation of the onset of deconfinement
at the SPS

B Brief history of the SPS ion program

B ®m Observation of the onset of deconfinement



B Brief history of the SPS ion program

Matsui, Satz
Rafelski, Muller

1986-1991: Pioneering study with O and S beams

Strangeness enhancement and J/y suppression
= Simple superposition models do not work

\

1994-2000: Pb+Pb collisions at the top SPS energy

anomalous J/y suppression, statistical properties of hadron
production, direct photons
= |s a new state of matter created?

* M.G., Gorenstein

1998-2002: Pb+Pb collisions at low SPS energies

Anomalies in energy dependence of hadron production
= Observation of the onset of deconfinement?

\

FUTURE



B B Onset of deconfinement at the CERN SPS

The basic idea - heating curve of water
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Heating curves of strongly AGS SPS
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The kink in pion multiplicity

AGS SPS
125,
é (A+A)-(P+P) i .
E 20
o m Deconfinement
15 s .
s Increased entropy production
10 +
sl n Steepening of the increase
o I0B0S of pion production
o R (m)~g" F—e
0) 5 10 15
F (Gev™)

FryVsyy

(rr) - total pion multiplicity
(Ny) - number of interacting nucleons
M.G., Gorenstein



The horn in strangeness vield
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Deconfinement

\

Decrease of masses of
strangeness carriers and
the number ratio of strange
to non-strange degrees of

freedom

\

A sharp maximum in the
strangeness to pion ratio

M.G., Gorenstein



The step in m_slopes
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T - inverse slope parameter
of transverse mass spectra

Deconfinement
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Constant temperature and
pressure in the mixed phase
region

\

Weaker energy dependence of
the shape of transverse mass
spectra

Shuryak, van Hove
M.G., Gorenstein



The models

Models with the
1°* order phase transition
reproduce the data
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FUTURE
@ @ Scarch for the critical point

B The critical point

B B Search for the critical point
of strongly interacting matter



B The critical point

Phase diagram of water
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the end point of a 1°* order line = a critical point of the 2" order
(at the critical point the phases start to be indistinguishable)
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g matter
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Berges, Rajagopal
Stephanov, Shuryak
Wilczek



Location of the critical point - models
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14 A compilation by Stephanov



Location of the critical point - experiment

Chemical freeze-out parameters
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3
L .

Hadron gas model analysis
of hadron multiplicities
T - chemical freeze-out
temperature

u, - baryo-chemical
potential

‘ Becattini et al.

Hadrons freeze-out close to chemical equilibrium
T and y, mark a point B on the trajectory of the expanding matter

\



Location of the critical point - experiment
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If it is a 1°* order PT,
the critical point

should be reachable
at higher energies
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In the “critical” region matter shows
anomalous properties

In the case of water large fluctuations in the
size of liquid/vapor domains lead to
the critical opalescence

Large fluctuations are also expected in the case of
strongly interacting matter close to the critical point

Stephanov, Shuryak, Rajagopal
Antoniou, Kapoyannis

The critical point may be “seen” provided
the freeze-out (observation) point is close to it
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_Search for the critical point
of strongly interacting matter




T (MeV)
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100

The position of chemical (and kinetic) freeze-out points
depends on collision energy and system size

central Pb+Pb collisions
at different energies
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T (MeV)
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chemical freeze-out
NA49 C+C
WV NA49 Si+Si

I NA49 Pb+Pb

200

Phase diagram domain
possibly covered by
chemical freeze-out points
in the future SPS study
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Pilot data on fluctuations
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What is the physics of the
measured large fluctuations?
The critical point?

The onset of deconfinement?
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Summary of @ @

Search for the critical point

\

(collision energy)-(system size) scan
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FUTURE

® @ ® Role of volume and density in deconfinement
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How does the transition
from p+p to Pb+Pb
look like?

What is the physics of it?

Pb+Pb
D+p First data on
A+A at 158A GeV
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Steep rise followed by a saturation
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iIncrease of the volume of matter
p+p —mm— central Pb+Pb

Increase of the density of matter

Related physics,
- deconfinement PT, Becattini, Bugaev
- percolation, Satz

- Influence of conservation laws,
Rafelski, Redlich

Becattini
- ?

b 4

has to be studied for a full understanding
of the deconfinement phase transition
in central Pb+Pb collisions
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Summary of @ @ @

Role of volume and density in deconfinement
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(collision energy)-(system size) scan
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® @@ @ Possible experiments: NA49-future and others
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NA49-future at the CERN SPS

NA49 at the CERN SPS
Is almost the ideal facility for
the measurements needed
In the near future (2006-...)

SPS covers the most important energy
domain (10 - 158A GeV) and it allows
the acceleration of nuclei
from p to Pb

NA49 Pb-Pb .
158 GeV/nucleon NA49, due to large acceptance, high

momentum resolution and good particle
identification, allows to measure
the relevant observables
(inclusive spectra and fluctuations)



Light ion program at the CERN SPS

10 20 30 40 60 80 158 A GeV

cent. Pb+Pb . . . . . .
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Requested ions in SPS:
- minimal request: p and Pb
(C and Si from Pb fragmentation)
- maximal request: p, C, Si, Cu, In and Pb

Requested energies:
-minimal request: 10, 30, 80 A GeV
-maximal request: 10, 30, 40, 60, 80, 158 A GeV

Total running time (minimal request):
-about 2 months of Pb beam
(4 days per point, 500k events)
- about 1 month of p beam
(10 days per point, 1M events)
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NA49 detector upgrades and maintenance:
-material cost about 500k CHF
-manpower 5 man-years

-duration about 1.5 years
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Possible future experimental landscape
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FT-RHIC — Fixed Target program at RHIC
under discussion is the use of the BRAHMS detector and
a jet target which should allow to study identified
hadron spectra in A+A collisions in the energy
range 10-100A GeV
+can be performed parallel to the collider runs
+almost continuous energy spectrum
- low priority as a parasitic program
- narrow acceptance, only inclusive spectra of
Identified charged hadrons, no fluctuations!

FAIR — Facility for Antiproton and lon Research in Darmstadt
the proposed project should allow to study nuclear
collisions in the energy range 2-35A GeV starting from 2012
+very high intensity beams, low cross section observables
+study of the properties of dense hadronic medium
-transition energy range is not covered, the critical point

Is probably not reachable

-first data after 2012
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NA49-future at the CERN SPS

NA49 at the CERN SPS
Is almost the ideal facility for
the measurements needed
In the near future (2006-...)

SPS covers the most important energy
domain (10 - 158A GeV) and it allows
the acceleration of nuclei
from p to Pb

NA49 Pb-Pb .
158 GeV/nucleon NA49, due to large acceptance, high

momentum resolution and good particle
identification, allows to measure
the relevant observables
(inclusive spectra and fluctuations)



Summary

Light lon program

at the CERN SPS

urgently needed

B to discover the critical point
of strongly interacting matter

Bl B touncover the properties of deconfinement

We have the unique opportunity for
a new exciting study at the CERN SPS

35
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Additional slides



Size of the "critical" reqgion
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The size of the critical region
AT~15MeV iIs comparable with the distance

N between the chemical freeze-out
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37



Kinetic freeze-out parameters
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main strangeness carriers
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|Isospin effect
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