THE FRONTIERS OF MEDICAL IMAGING

MARIA CARLA GILARDI IBFM CNR, UNIVERSITY OF MILANO BICOCCA, S.RAFFAELE INSTITUTE, MILAN

MEDICAL IMAGING

TECHNIQUE		YEAR	ENERGY	PHYSICAL PROPERTY	IMAGING
RADIOLOGY	X RAYS IMAGING	1895	X RAYS	ABSORPTION	And the second
ECHOGRAPHY	ULTRASOUND IMAGING	1950	US	REFLECTION TRANSMISSION	
NUCLEAR MEDICINE	RADIOISOTOPE IMAGING	1950	γRAYS	RADIATION EMISSION	

COMPUTERIZED TOMOGRAPHY

TECHNIQUE		YEAR	ENERGY	PHYSICAL PROPERTY	IMAGING	
X RAYS COMPUTERIZED TOMOGRAPHY	СТ	1971	X RAYS	ABSORPTION		MORPHOLOGY
MAGNETIC RESONANCE IMAGING	MRI	1980	RADIO WAVES	MAGNETIC RESONANCE	X	MORPHOLOGY /FUNCTION
POSITRON EMISSION TOMOGRAPHY	PET	1973	γRAYS	RADIATION EMISSION		FUNCTION

PHYSICAL PERFORMANCE

COVERAGE: to co.

to collect data from an entire organ in a single scan

SPATIAL RESOLUTION:

to see tiny structures in 3D volumes high spatial resolutions in plane and in z-direction (slice thickness)

TEMPORAL RESOLUTION: to perform a scan in a very short time

CONTRAST RESOLUTION: to resolve small structures despite the similarity to surrounding tissues high intrinsic contrast, high spatial resolution, high sensitivity and low noise

CT SCANNERS						
GENERATION	I 1972	II 1974	III 1976	IV 1977		
SOURCE-DETECTOR MOTION	TRANSLATION ROTATION	TRANSLATION ROTATION	ROTATION	ROTATION		
DETECTORS NUMBER	1	~ 3-30 ~ 400-500		~ 600-4800		
SCAN (ROTATION) TIME	5 min	~ 10-60 sec	~ sec	~ sec		
SLICE Number	1	1	1	1		
Thickness	13 mm		1 mm	1 mm		
Pixel size	~ 5 x 5 mm		0,5 x 0,5 mm	0,5 x 0,5 mm		
	307. 1A			STEP AND SHOOT		

CT SCANNERS					
GENERATION	I 1972	II 1974	III 1976	IV 1977	
SOURCE-DETECTOR MOTION	TRANSLATION ROTATION	ATION TRANSLATION TION ROTATION ROTATION		ROTATION	
DETECTORS NUMBER	1	~ 3-30	~ 400-500	~ 600-4800	
SCAN (ROTATION) TIME	5 min \sim 10-60 sec \sim sec		\sim sec	~ sec	
SLICE Number	1	1	1	1	
Thickness	13 mm		1 mm	1 mm	
Pixel size	~ 5 x 5 mm		0,5 x 0,5 mm	0,5 x 0,5 mm	
	307. 1A			STEP AND SHOOT	

CT SCANNERS

GENERATION	SPIRAL CT		MULTI SLICE SPIRAL CT		
	1989	1994	1998	2002	2004
DETECTOR MOTION	Continuous v	olume acquisition	Continuous volume acquisition		
ROTATION TIME	1 sec 0,75 sec		0,5 sec	0,4 sec	< 0,4 sec
SPEED	24 sec / 24 cm PITCH=1	100 sec / 130 cm PITCH=1			
SLICES Number	1	1	4	16	64
min Thickness	2 mm	1 mm	1 mm	0,6 mm	< 0,4 mm
				Array Detector	Single Row Detector

VOLUMETRIC CT

< 0,4 sec/ rotation Organ in a sec (17 cm/sec) Whole body < 10 sec

TECHNOLOGICAL DEVELOPMENTS

• SLIP RING TECHNOLOGY continuously rotating gantry

• X RAYS TUBE

up to 100 KW generator, 80-140 mV, 800 mA peak power, fast heat dissipation

• ULTRA FAST DETECTORS

e.g. Ceramics

• COMPUTER and SOFTWARE

reconstruction parallel to scan acquisition processing of thousands of images

VIRTUAL COLONOGRAPHY CT

VIRTUAL ENDOSCOPY

CARDIAC CT

PHASES OF A CARDIAC CYCLE

FUNCTIONAL PARAMETERS

THE FRONTIERS OF CT IMAGING

INCREASED COVERAGE SPEED

(combining the increased coverage and decreased scan time)

- WHOLE BODY STUDIES IN LESS THAN 10 SEC
- CAPTURING OF MOVING ORGANS
- PHYSIOLOGIC (NOT ONLY MORPHOLOGIC) IMAGING

MAGNETIC RESONANCE IMAGING (MRI)

MAGNETIC RESONANCE IMAGING (MRI)

MORPHOLOGY

T 1	T2	PD

SCAN TIME to cover an entire organ:	~ min
SPATIAL RESOLUTION:	~ mm
CONTRAST RESOLUTION:	very high for soft tissues

fMRI BOLD

Blood Oxygenation Level Dependent

- Oxyhaemoglobin in the arterial blood is diamagnetic
- Deoxyhaemoglobin in the draining veins is strongly PARAMAGNETIC
- Deoxyhaemoglobin can serve as an intrisic paramagnetic contrast agent

ACTIVATION STUDIES

Control condition

Motor stimulation

Visual stimulation

Cognitive stimulation

fMRI BOLD ACTIVATION STUDIES

RESTING STATE

ACTIVATED STATE

Oxygen

COGNITIVE ACTIVATION VERBAL FLUENCY

PHONEMIC

SEMANTIC

E. Paulesu et al, Neuroreport, 1997, 8(8):2011-7.

DIFFUSION WEIGHTED MRI

DW-MRI: measure of the effect of H_2O molecules diffusion on tissues MR signal

T2

weighted image

DIFFUSION weighted image

Acute trombosis of the left carotid artery.

DIFFUSION WEIGHTED MRI

- Diffusion anisotropy resulting from the presence of obstacles limiting the molecular movements in some directions can be detected and tracked
- Anisotropy can be observed in white matter in the brain as a result of its organization in bundles of fibers

1989218

Restricted Diffusion

Free Diffusion

DIFFUSION IMAGING – FIBER TRACKING

SHFJ - CEA

POSITRON EMISSION TOMOGRAPHY (PET)

ISOTOPES	T _{1/2}	
¹¹ C	20.4 min	"natural"
^{13}N	10.0 min	"natural"
¹⁵ O	2.0 min	"natural"
¹⁸ F	109.8 min	"pseudo-natural"

[18F]FDG [18F]FESP [150]H2O [13N]AMMONIA m-[11C]hydroxyefedrine [11C]FLUMAZENIL [11C]RACLOPRIDE [11C]FE-β-CIT [11C]SCH23390 [11C]CARAZOLOL [11C]MCN5652 [11C]MDL100907 [11C]methylcoline [11C]FLUVOXAMINE [11C]CGP62349 [11C]isovaleroil-L-carnitine [¹¹C]PNU167760 [¹¹C] BISOPROLOL [¹¹C] ICI118551 [¹¹C] OLANZAPINE [¹¹C] SB235753 [¹¹C] E2020 [¹¹C] SCH442416 [¹¹C] PALMITATE [¹¹C] A 84543 [¹¹C] VC195 [¹¹C] VC193M [¹¹C] VC198M [¹¹C] WAY100635 [¹¹C]RN5 ¹¹C] VA100 [¹¹C] CARFENTANIL [¹¹C] ZOFENOPRIL [18F]FLUORO CAPTOPRIL [¹¹C] CNR1 [¹¹C] PK1113195 [¹¹C] F167 [¹¹C] PD60 [¹¹C] PD78

Glucose metabolism D2 and 5-HT₂ receptor antagonist Cerebral flow. Functional activation studies Mvocardial flow Adrenergic antagonist Benzodiazepine receptor antagonist Dopamine D2 receptor antagonist Dopamine reuptake inhibitor Dopamine D1 receptor antagonist Adrenergic $\beta 1/\beta 2$ receptor antagonist Serotonin reuptake inhibitor Serotonin 5-HT2A receptor antagonist Prostate Cancer Serotonin reuptake inhibitor GABAB antagonist Cerebral metabolism Serotonin 5-HT₁₄ receptor antagonist Adrenergic β 1 antagonist Adrenergic β_2 receptor antagonista Atypical Antipsychotic Dopamine D4 receptor antagonist Muscarinic M₂ receptor antagonist Adenosine A_{2A} receptor antagonist Fatty acids metabolism Nicotine $\alpha_2 \beta_4$ antagonist Peripheral Benzodiazepine Peripheral Benzodiazepine Peripheral Benzodiazepine Serotonin 5-HT1A receptor antagonist Adrenergic α 1 receptor antagonist Opioid K1 receptor antagonist Opioid µ receptor agonist ACE inhibitor ACE inhibitor α 1 adrenergic antagonist Peripheral Benzodiazepine

 σ_2 receptor antagonist dopamine D_2 antagonist

dopamine D_3 antagonist

RADIOTRACERS PREPARED AT HSR

PET – CEREBRAL GLUCOSE METABOLISM

¹⁸F-FLUORYDEOXYGLUCOSE (¹⁸FDG)

PET FUNCTIONAL RECEPTOR IMAGING

POSITRON EMISSION TOMOGRAPHY (PET)

PET COVERAGE AND AXIAL SAMPLING

FIRST GENERATION PET

CURRENT GENERATION PET

1 SLICE - 2 cm

> 40 SLICES – 6 mm Axial FOV: 15 –20 cm

¹⁸F-FDG WHOLE BODY PET

- DIAGNOSIS
- **STAGING**
- RE-STAGING AND FOLLOW-UP
- RADIOTHERAPY

CLINICAL PET IN ITALY TOTAL EXAMS/YEAR

ESTIMATED PET - PET/CT SCANNER UNITS WW

ADVANCES IN PET IMAGING

RADIOCHEMISTRY

NEW TRACERS PET

INSTRUMENTATION <

NEW SCINTILLATION CRYSTALS

PET/CT

TRACERS for TUMOR CHARACTERIZATION

- Glucose metabolism
- Membrane function
- Proliferation
- Oxygenation

- Apoptosis
- Angiogenesis
- Neuroendocrine tumors

¹⁸F]FDG ^{[11}C]Choline [¹⁸F]FLT ^{[18}F]FMISO ¹⁸F]FAZA [⁶⁴Cu]ATSM ^{[18}F]Annexin V ^{[18}F]NGR-peptide [¹¹⁰In]Octreotate

ADVANCES IN PET IMAGING

RADIOCHEMISTRY

NEW TRACERS PET

INSTRUMENTATION <

NEW SCINTILLATION CRYSTALS

PET/CT

FUTURE DEVELOPMENTS IN PET

CURRENT DETECTORS: BGO, GSO, LSO

SANDWICH OF DETECTORS NEW DETECTORS with:

- SMALLER SIZE (2-3 mm)
- GOOD ENERGY RESOLUTION
- DEPTH OF INTERACTION INFORMATION

FASTER DETECTORS forHIGH COUNT RATE CAPABILITYTIME OF FLIGHT INFORMATION

ADVANCES IN PET IMAGING

RADIOCHEMISTRY

NEW TRACERS PET

INSTRUMENTATION <

NEW SCINTILLATION CRYSTALS

PET/CT

PET

CT

PET/CT

LACK OF ANATOMICAL INFORMATION

CT PET

¹⁸F-FDG PET/CT

PET/CT - APPLICATIONS

• ANATOMICAL LOCALIZATION OF PET FUNCTIONAL IMAGES

• PET/CT GUIDED RADIOTHERAPY TREATMENT PLANNING

PET/CT BASED RADIOTHERAPY

PET

PET/CT BASED

TREATMENT PLAN

DECREASED TARGET VOLUME PRIMARY TUMOR(T) CHARACTERIZATION

INCREASED TARGET VOLUME LYMPH NODES CHARACTERIZATION

CT LYMPH-NODES WITH DIAMETER < 10 mm

PET/CT: PATHOLOGICAL LYMPH-NODAL UPTAKE

Respiration control during PET/CT

RESPIRATORY CURVE

MOLECULAR IMAGING

Visual representation, characterization and quantification of biological processes at the cellular and sub cellular level within living organisms.

- multiple imaging capture techniques (Nuclear medicine/PET, MRI, MRS, Optical,...)
- basic cell/molecular biology
- medical physics
- biomathematics
- bioinformatics
- •

TOWARDS MOLECULAR IMAGING

ANATOMICAL IMAGING

- Morphology
- Morphometry

PHYSIOLOGICAL **IMAGING**

- Haemodynamics
- Vascular permeability
- Tissue oxygenation/hypoxia
- CNS activity
- Metabolites
- pH

MOLECULAR IMAGING

- Target-specific contrast agents
- Functional receptor imaging
- PharmacoKinetics

TARGET STRUCTURE MECHANISM MACROSCOPIC MICROSCOPIC