

The Increased Biological Effectiveness of Heavy Charged Particle Radiation:

From Cell Culture Experiments to Biophysical Modelling

> Michael Scholz GSI Darmstadt

Ion Beams for Tumor Therapy

Advantage of ion beams for therapy:

Physical aspects:

- Inverted depth dose profile
- Defined penetration depth
- Reduced lateral scattering

Biological aspects:

- Increased effectiveness
- Reduced oxygen effect

Inverted Depth Dose Profile

Biological Advantage: Increased Effectiveness

Cell Survival

V79 Chinese Hamster Cells

Survivor: 1 cell $\implies \ge 50$ cells (t=0) (t=7d)

"Colony forming"

Survival after Photon Irradiation

G. Böhrnsen

$$S = \frac{N_{col}}{N_{seed}} = e^{-(\alpha D + \beta D^2)}$$

Survival after Carbon Ion Irradiation

- Increasing effectiveness with decreasing energy
- Saturation effects at very low energies (<10 MeV/u)
- Transition from shouldered to straight survival curves

Definition of Relative Biological Effectiveness

$$RBE = \frac{D_{\gamma}}{D_{Ion}} \Big|_{Isoeffect}$$

RBE depends on LET

RBE depends on **Dose**

- RBE decreases with dose
- Dose dependence more pronounced for lower energies

RBE depends on **Cell Type**

Increase of effectiveness is more pronounced for resistant tumors compared to sensitive tumors

GSI(-

RBE depends on **Cell Type**

RBE is higher for resistent (repair proficient) cell types

RBE depends on **Depth**

W. Weyrather et al.

Extended Bragg peak / SOBP irradiation: Distal part: mainly Bragg peak ions ⇔ high RBE Proximal part: mix of Bragg peak and higher energies ⇔ moderate RBE

RBE depends on **Ion Species**

RBE maximum is shifted to higher LET for heavier particles

 \succ The shift corresponds to a shift to higher energies

Increase of RBE from entrance channel to Bragg peak region is most pronounced for carbon ions

G.

Explanation of increased effectiveness

Radiation induced DNA damage

Cells are able to repair radiation induced DNA damage

Cellular Repair Pathways

Transition $G_1 \rightarrow S$ -Phase

Transition $G_2 \rightarrow M$ -Phase

G 5 1

Can we model it from first principles?

Radial Dose Profile of Particle Tracks

Radial Dose Profile: D(r): Expectation value

$$D(r) \sim 1/r^2$$

 $R_{Track} \sim E^c$

Microscopic Local Dose Distribution

Visualization of Local Biological Effect

CDKN1A/p21: green DNA: red Pb-ions, 3.1 MeV/u, 3x10⁶/cm²

B. Jakob et al.

Ca-ions, 10.1 MeV/u, 2x10⁶/cm²

M. Scholz et al.

Biological Visualization of Particle Tracks

B. Jakob et al.

Amorphous Track Structure Models

Basic Assumption:

Increased effectiveness of particle radiation can be described by a combination of the photon dose response and microscopic dose distribution

Principle of Local Effect Model

Local biological effect:

 $S = e^{-\overline{N}_{lethal}}$

Low-LET dose response: $\overline{N}_{letha}(D) = -\ln S_X(D) = oD + \beta D^2$

Event density: $v(D) = \overline{N}_{lethal}(D) / V_{Nucleus}$

M. Scholz et al.

$$\overline{N}_{lethal} = \int \frac{-\ln S_X(d(x, y, z))}{V_{Nucleus}} dV_{Nucleus}$$

• Radial Dose Distribution:

Monte-Carlo (M. Krämer), Analytical Models (Katz, Kiefer), Experimental Data

$$D(r) \propto \frac{1}{r^2} \qquad R_{Track} \propto E^{1.7}$$

• X-ray Survival Curves:

Experimental data according to LQ; additional assumption: Transition from shoulder to exponential shape at high doses

$$S = e^{-(\alpha D + \beta D^2)}, \quad D < D_t$$
$$S = e^{-s_{\max}(D - D_t)}, \quad D \ge D_t$$

 Target Size (Nuclear Size): Experimental Data

- Exact calculation:
 - Monte-Carlo method for determination of ion impact parameters
 - Numerical integration (taking into account overlapping tracks in detail)
- Approximation:
 - Exact calculation of single particle effects (corresponding to initial slope of survival curve)
 - Estimation of β-term from boundary condition:
 Max. slope of HI curve = max. slope of photon dose response curve

Comparison with experimental data

Data: Kraft-Weyrather et al.

Comparison with experimental data

Data: Weyrather et al., IJRB 1999

Dependence on Particle Species

Tissues show complex response to radiation

Nerve tissue: non proliferating cells Clonogenic survival not defined

Which parameters of photon dose response define RBE?

Correlation Shoulder – RBE: Theory

 $\rightarrow \alpha_x / \beta_x$ -ratio determines RBE

Application to Normal Tissue Effects

Skin reaction in minipigs

Role of Modeling for Treatment Planning in Heavy Ion Tumor Therapy

- Biological advantage of ion beams in tumor therapy: increased effectiveness in Bragg peak region
- Increased effectiveness depends on factors like dose, ion species & energy, cell type, ...
- Complex dependencies require modeling for treatment planning in ion tumor therapy
- Modeling cannot be based on first principles
- Empirical approaches based on a link to the photon dose response curves allow high quantitative precision

