

The Increased Biological Effectiveness of Heavy Charged Particle Radiation:

> From Cell Culture Experiments to Biophysical Modelling

> > Michael ScholzGSI Darmstadt

Ion Beams for Tumor Therapy

Advantage of ion beams for therapy:

Physical aspects:

- Inverted depth dose profile
- Defined penetration depth
- Reduced lateral scattering

Biological aspects:

- Increased effectiveness
- Reduced oxygen effect

Inverted Depth Dose Profile

Biological Advantage: Increased Effectiveness

Cell Survival

V79 Chinese Hamster Cells

Survivor: 1 cell \implies ≥ 50 cells (t=0) (t=7d)

"Colony forming"

I. Katayama

 T_{ges} =85h

Survival after Photon Irradiation

G. Böhrnsen

$$
S = \frac{N_{col}}{N_{seed}} = e^{-(\alpha D + \beta D^2)}
$$

Survival after Carbon Ion Irradiation

n fil

- \blacktriangleright Increasing effectiveness with decreasing energy
- ¾Saturation effects at very low energies (<10 MeV/u)
- \blacktriangleright Transition from shouldered to straight survival curves

Definition of **R**elative **B**iological **E**ffectiveness

$$
RBE = \frac{D_{\gamma}}{D_{Ion}}\Big|_{Iso effect}
$$

RBE depends on **LET**

RBE depends on **Dose**

- \triangleright RBE decreases with dose
- ¾ Dose dependence more pronounced for lower energies

RBE depends on **Cell Type**

Increase of effectiveness is more pronounced for resistant tumors compared to sensitive tumors

n Ti

RBE depends on **Cell Type**

RBE is higher for resistent (repair proficient) cell types

n fil

RBE depends on **Depth**

Extended Bragg peak / SOBP irradiation: Distal part: mainly Bragg peak ions \Rightarrow high RBE Proximal part: mix of Bragg peak and higher energies \Rightarrow moderate RBE

RBE depends on **Ion Species**

 \triangleright RBE maximum is shifted to higher LET for heavier particles

r Ti

 \triangleright The shift corresponds to a shift to higher energies

65

Increase of RBE from entrance channel to Bragg peak region is most pronounced for carbon ions

Explanation of increased effectiveness

Radiation induced DNA damage

Cells are able to repair radiation induced DNA damage

Г÷

Cellular Repair Pathways

Transition $G_1 \rightarrow S$ -Phase

 $\mathsf{S}\text{-}\mathsf{Phase} \begin{vmatrix} \mathsf{T} \mathsf{T} \mathsf{ansition} \ \mathsf{G}_2 \text{-}\mathsf{M}\text{-}\mathsf{Phase} \end{vmatrix}$

re si

Can we model it from first principles?

Radial Dose Profile of Particle Tracks

Radial Dose Profile: D(r): Expectation value

$$
D(r) \sim 1/r^2
$$

$$
R_{\text{Track}} \sim E^c
$$

Microscopic Local Dose Distribution

Visualization of Local Biological Effect

CDKN1A/p21: green DNA: red Pb-ions, 3.1 MeV/u, 3x10⁶/cm²

B. Jakob et al.

Ca-ions, 10.1 MeV/u, 2x10⁶/cm²

M. Scholz et al.

Biological Visualization of Particle Tracks

B. Jakob et al.

Amorphous Track Structure Models

Basic Assumption:

Increased effectiveness of particle radiation can be described by ^a combination of the photon dose response and microscopic dose distribution

Principle of **L**ocal **E**ffect **M**odel

Local biological effect:

 $\boldsymbol{S} = \boldsymbol{e}^{-N}$ lethal

Low-LET dose response: N lethal (D) = $-\mathrm{ln}S_X(D)$ = α **D**+ β **D**²

Event density: $V(D) = N_{\text{lethal}}(D)/V_{\text{Nucleus}}$

M. Scholz et al.

$$
\overline{N}_{\text{lethal}} = \int \frac{-\ln S_X(d(x, y, z))}{V_{\text{Nucleus}}} dV_{\text{Nucleus}}
$$

• Radial Dose Distribution:Monte-Carlo (M. Krämer), Analytical Models (Katz, Kiefer), Experimental Data

$$
D(r) \propto \frac{1}{r^2} \qquad R_{\text{Track}} \propto E^{1.7}
$$

• X-ray Survival Curves:

Experimental data according to LQ; additional assumption: Transition from shoulder to exponential shape at high doses

$$
S = e^{-(\alpha D + \beta D^2)}, \quad D < D_t
$$

$$
S = e^{-s_{\text{max}}(D - D_t)}, \quad D \ge D_t
$$

 \bullet Target Size (Nuclear Size): Experimental Data

- Exact calculation:
	- Monte-Carlo method for determination of ion impact parameters
	- Numerical integration (taking into account overlapping tracks in detail)
- • Approximation:
	- Exact calculation of single particle effects (corresponding to initial slope of survival curve)
	- Estimation of β-term from boundary condition: Max. slope of HI curve = max. slope of photon dose response curve

Comparison with experimental data

Data: Kraft-Weyrather et al.

res

Comparison with experimental data

n÷.

Data: Weyrather et al., IJRB 1999

Dependence on Particle Species

Tissues show complex response to radiation Correlation with cell survival?

Nerve tissue: non proliferating cells Clonogenic survival not defined

Which parameters of photon dose response define RBE?

Correlation Shoulder – RBE: Theory

 α_X /β_x-ratio determines RBE

Application to Normal Tissue Effects

n ÷

Role of Modeling for Treatment Planning in Heavy Ion Tumor Therapy

- • Biological advantage of ion beams in tumor therapy: increased effectiveness in Bragg peak region
- Increased effectiveness depends on factors like dose, ion species & energy, cell type, ...
- Complex dependencies require modeling for treatment planning in ion tumor therapy
- Modeling cannot be based on first principles
- • Empirical approaches based on a link to the photon dose response curves allow high quantitative precision

