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The problem and motivation
Basic facts:

® Markovian MC implementing the QCD/QED evolution equations is basic ingredient
in all parton shower type MCs

®» Unconstrained forward Markovian MC, with evolution kernels from perturbative
QCD/QED, can only be used for FSR (inefficient for ISR).

® For the ISR cascade the elegant Backward Markovian MC algorithm of Sjostrand
(Phys.Lett. 157B, 1985) is a widely adopted remedy.

® Backward Markovian MC does not solve the QCD evolution egs. It merely exploits
their solutions coming from the external non-MC methods

The problem:
® s it possible to invent an efficient MC algorithm, non-Markovian, solving internally
the evolution egs. by its own?

Motivation:
® More freedom in the modeling the ISR parton shower,

® Easier MC modeling of the unintegrated parton distributions Dy, (pr, x)

» MC modeling of the CCFM class of the QCD calculations/models.
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Vocabulary

The algorithm in which the number of emission (determining the dimension of the
dimension of the integral, phase space), is generated as the last variable

Markovian MC algorithm

non-Markovian MC algorithm

The algorithm in which the number of emission (the dimension of the integral),
IS generated as one of the first variables.

Constrained MC algorithm = CMC

The integration domain restricted to a less-dimensional hyperspace by means of
inserting the 6 (F'(z1, ..., xn)) function.

(Energy-momentum Conserving 6 (P — 3" p,) is a well known example.)

CMC algorithm can generate efficiently points in this subspace.

The distribution on the hyperspace is usually much more complicated (to generate).

Evolution equation leading to Markovian process

OtNi(t) = ZL Prx(t)Ng (t), where Prr(t) = — ZX;éI Px (1),
I, K can be discrete, continuous or mixture of both.

QCD case: ) x — = Jo dz/zand Py, — (w2/1)Pey i, (w2/21)
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Pure bremsstrahlung from £ = G, ¢, ¢ line

Iterative solution of the QCD evolution equations,
for evolution tg — t, where t = In Q) is the evolution time:

2Dy (t, to; x) = e~ Tr(b:t0) {5:p:1+

o0 1
Z — H/ dt; / dz; P (ti, i) Speyr zi}a
: n t O =1

Notation:
o P o). p PO (£)5,—1 + PO, (¢
kk(t,2) = 2P (t) = PO(t)0.=1 + Py, (¢, 2),

PR (t,2) = Tkzk(t, 2)01—2>c
where P, (z) are QCD DGLAP kernels, see next slide.

Sudakov formfactor: &, (¢, to) ft ar’ P2, ().

0.0 = 1 for x > y and = 0 otherwise;
dx=y = 0(x —y).
IR cut ¢ << 1, does not depend on t (this is OK for DGLAP).

e o0 0
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QCD LL kernels

Table of the elements in the LL kernels (T =n¢TRr), @ = q¢+q

IK AQ 1 B | 9 D%(z) | Dik(z) | [dzD%(z)
GG | HCa— 2Ty | 2C4 | 2C4 | 2Ca(—2+2z— 2?) 0 —LCy
QG — — 0 | 2T¢ (2% + (1 —2)?) 2T'f 3Ty
QQ 5Cr | 2CF 0 Cp(—1—2) 0 —3Cp
GQ — — | 2CF Cr(—2+2) 0 —3Cp

Pii(z) = 0(1 — 2)d;, Ak +

(1—2)+

1
dik Bri + ;Cik + Dk (2).

For the purpose of the MC generation temporary simplifications:

2Py (2) — 2P (2) = 2By (1

PO (L, 2) — PO (t,2) = alt) zP3.(2) =

os(t 1
PO (1) = W( ){Bkkz In - Akk}

1

— 2

1 1
+—> = By

1— 2z’
2Bkkz 91—z>s
ﬂo(t—t/\) 1—2

z
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Mapping of variables etc.

The t dependence of a(t) compensated by means of mapping ¢t; — 7; = In(¢; — In Ag)
and we also introduce new energy variable y; = In(1 — z;):

2Dy (1,705 ) = e~ Er(T:70) {5:1::1‘|‘

In(1—x)

‘|‘£ka Z H / dyl _Hn Zz(yz)/dTZ wp}

ln(l £)

NOTATION:
® Sudakov formfactor: @ (7,70) = (7 — 70) (bx In = — ay,)
MC compensating weight wp = = [[7_; Pkk(zj)
Jj=1p k:(zj)

where dummy z“* introduced to optimize final MC weight distribution

e o

constants: by = 62_03’“’“’ ap = %Akk.
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The energy CONSTRAINT is our target

n

The constraintis: = = [ [ z;(vi) = F(y1,Y2,.-.,Yn).

Conveniently rewritten as ln% =20 0 f(y)} fly;) =—1In (1 —exp (y;)) = —Inzj.

It also determines upper integration limit: y; € (Ymin, Ymax) = (Ine,In(1 — z)).
Ordering energy variables y;, defining yo = 0, yields:

2Dy (7, 70; ) = e~ Tr(T:70) {5:1;:14-

0o n Ymax A
1
+ @k 1 Z by, H / dyi Oy;>y; 10 | In - Z F(y5) /dn wp}.
n=1 i=1, " J
Ymin 70

® Function f(y;) is very steeply (exponentially) rising, hence the constraint
xz = [[;"_, z:i(y;) is “saturated” by a single z;, while other ones z; ~ 1.

® In other words, y; ~ ymax = In(1 — ), and other ones y;, i # j move freely within
the (ymina ymaX)-

® Due to ordering, y» ~ ymax €effectively takes responsibility for satisfying the
constraint.
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1. How do we get rid (satisfy) the energy constraint?

STEP 1:
Perform the following simple linear transformation:
yi =y; — Y |

where Y is “adjusted” such that y/, = y», + Y = Ymax-
The introduction of Y variables is countered by the §-function:

2Dy (t, to; x) = e~ Tr(b:to) {5:c:1‘|‘

0o n Ymax
+ae Tty by /dY 11 / dyi Oy; >y, _19(Yn +Y — Ymax)
n=1 =1, 7.
Ymin

%6 1n - > flyy) /Td }
n— — ; T; W .

x j Y3 F

70
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2. How do we satisfy the energy constraint?

STEP 2:
Change variables y; — y.. Jacobian is equal one!

D (t, to; x) = e_q)’f(t’t(’){éle 4 gkt Z by /dY
n=1

n Ymax -
1
I [ 6, 56— s {2 =3 5 - 1) | [ an wp},
i:1ymin J 70
IMPORTANT!

® We are able to preserve the same integration limits ¥/ € (Ymin, Ymax) i Spite of
0y1>ymin = 4! >y +yrmin Luckily we shall get Y > 0 in the next step!

B To be consistent we redefine wp — wp X 9y1>y+ymin.

® Notation consistent by adding Yy = Ymin-

® We have got ¥/, = ymax as we wanted!!!
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3. How do we satisfy the energy constraint?

STEP 3: Eliminate the constraint §(z — F'(y’;)) by means of the Y-integration:

© o o0 00

2Dy (t, to; x) = e~ Pr(b:to) {5x:1+

00 n Ymax
4+ @k —1 Z bz H / dy; 9y4>y7/;_15(yf,n - ymax)
n=1 i:1ymin

T

o)
X dT; wp},
Oy MF(), —V)lyoyo J

TO
1/|0y In F| enters the MC weight. Does it destroy the weight??!!

Yo = Yo(, ), .-, yp) is the solution of the transcendent equation z = F'(y; — Y).

Check whether y1 = y] — Yo(z, ¥}, ---, Y1) > Ymin. About 1/3 evens trashed.
Effectively §(z — F'(y},-..,y;,)) is traded for 6(y;, — ymaz)-

The parallel shift {3 : 4" — y} maps y’ from the (n — 1)-dim. simplex S,,_; defined
bY Y = Ymaa, iNto target hyperspace R,,_1 defined by x = F(y;).

In fact R,,—1 € 2(Sp—1), thanks to Yo (x, y1, ..., y;,) > Ol
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® Begin with ! such that one of them y,, = ymax
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ymin yl

® Begin with ! such that one of them y,, = ymax

® Shift y, — y; by Y, where Y solves constraint condition [] z; =«
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® Begin with y. such that one of them y,, = ymax
® Shift y, — y; by Y, where Y solves constraint condition [] z; =«

® Y is therefore complicated function of all y/
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e o0

Y1y Y Yn

‘i\\“‘“““""""""I, ’

%,

. ‘ ‘ ‘ ,
()
—P

e e e © |
Ynax

Begin with ! such that one of them ¥, = ymax
Shift y! — y; by Y, where Y solves constraint condition [[ z; = «
Y is therefore complicated function of all y;

Sometimes the smallest ¥’ is shifted OUT of the phase space, below IR the limit
Ymin. SUch an event gets MC weight w = 0
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Master formula for the bremsstrahlung Monte Carlo

oo b wE—1
2Dy (1, 705 ) = {7700k Y {eb’“ms)csn:ocsxﬂ + 8001z T ) MT
— xg(x
n=0

1 1
) Rl i - 6(1 — maxr;) s w
< Pa(bu[R(1 - 2) ~ R T [ ar 200 O/d #)

NOTATION:

Mapping 7; = 19 + s;(7 — 70)

Mapping z; = 1 — e¥i =1 — exp (Ymin + 7 (Ymax — Ymin) — Y))
Poisson distribution: P, (\) = e~ *A\"/n!, A =<n >.

R(x) = (7 — 70) In(zx) (implicitly depends on 7 — 19).

e _ zg(z)
MC weight: | w¥ = wp 51557577 Oyt Yo >yamin |

where g(z) = |0y In 2(y)| 2=z = 1_7‘” is to stabilize the MC weight.

e o o000

Ordering of y. is here relaxed (to get explicit 1/(n — 1)! for Poisson).
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© o o0 b0

°

Gluon bremsstrahlung MC algorithm overview:

The out-most integration variable is total x, the same as in hard process H(xz).

Neglecting temporarily MC weight w# we can sum/integrate analytically the entire

1
series of integrals in the master eq.:. oy = [ dz H(xz) Dy (t, to;x) =
€1

1 0 exp(bpR(1—x)) ) ; ;
:6{ cr H(x) g dR Z(R)“k~ e(T—T70)ag 707 Dk(ﬁ’to)

Mapping: R(Z) = ebx*R(1—2) — (1 — Z)br(7—70)
Generation of R (and of k) is done by Foam general purpose MC tool.

Knowing Z(R), if Z > 1 — e the emission multiplicity n is generated according to
Poisson P,,_1 (Non-Markovian!!!), otherwise n = 0 and Z = 1.

Variables s;,i = 1,2, ...,n are generated and mapped into 7;(s;) and t;(7;).
They are ordered.

Unordered variables r; € (0, 1) are generated, such that one of them is equal 1
(rescaling). Mapped into vy (r;).

The solution Y = Y| of the transcendent equation In F(y; —Y)—Inz = 0is found
numerically (NB. derivative 0y In F' for MC weight obtained as byproduct).

With Yy at hand, variables z;(y;(y}))) are evaluated.
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Test of Gluon bremsstrahlung Constrained MC
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Histograms n = 0 represents pure gluon bremsstrahlung out of gluon line.
Starting distribution is gluon in proton at Q = 1GeV.

Plotted distribution is at 1TeV.

Compared are results from unconstrained Markovian MC (EvolFMC) and the new
non-Markovian constrained MC (EvolCMC).

They agree to within statistical error ~ 0.25% (100M events)!
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Test of Gluon bremsstrahlung Constrained MC
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Histograms n = 0 represents pure gluon bremsstrahlung out of quark line.
Starting distribution is gluon in proton at () = 1GeV.

Plotted distribution is at 1TeV.

Compared are results from unconstrained Markovian MC (EvolFMC) and new the
non-Markovian constrained MC (EvolCMC).

They agree to within statistical error ~ 0.25% (210M events)!
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Hierarchic reorganization of the emission chain (cascade)

Beyond pure bremsstrahlung, the full DGLAP non-Markovian MC requires two-level

organization of the emission chain:
(S) Flavor transmutation super-level G - Q - G — Q — G — ...
(B) Bremsstrahlung sub-level, any No. of gluon emissions (Q — @, G — G).

Starting point is the usual iterative solution (k = k,,) of the QCD evolution equations:
Dy (1, x) = e TR gDy (79, )+

+§: > [H/df7 T 1}/ [ﬁojdz}

n=1 kn—l"-klko J— 1 1=1

—(15—Ti—1) Ry,
X e —(t—Tn )R [H Tk iki— 1(Zz) & (rimric) kl_l] xODkO (7'0,560)513:330 7=y 20
1=1

Notation:
® Kernels: ng) ks 1(zz-) = @ 2i P, (2i)01—2,>¢

® Transitionrates: Ry =3 [y~ d PS5 (2) = 22 Ry
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Hierarchic reorganization of the emission chain (cascade)

The key point is to isolate segments of pure gluon bremsstrahlung with the
transformation of the summation order (indexing) which looks schematically as follows:

o oo
2 2 Kknkaradake = 2 2
n=0%k, _1...,k1ko n=0 kn—1---sk1ko
kn#ky 17 #k1#k
o

X 2). (1), Un—-1) 2 1 (1) 2). (1), (4o) 2), (1

jn,jn_;"jgzl R 6P M eI e kD e (P (D00 () ()
® In the above we have kfnjr) == l<:7(,2) = k:ﬁl) and the purpose of the upper index

in this context is simply to show that the same index k is repeated j, times.

However, variables 2™ and 7™, r=1,2,....n, m=1,2,...,j, are truly
independent and the upper index truly differentiates them.

The aim is now to show that one can factorize out the pure bremstrahlung functions
D (T, x|710, o) and identify the remaining functions and integrations.

| omitt the details of the formal combinatoric proof of the above transformation.

oo o o

Alternative derivations: directly from evolution eqgs. or using functional methods.
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Two-level, hierarchic organization of the emission chain

T>T1, k=k T k k

n
. x=x=x27Z [lz2 Xn-1
+1 55

n+l 0 n

Black circle is G — @ or Q — G flavor transmutation
Red oval is pure bremsstrahlung segment

Blue oval is the last bremsstrahlung segment, just before the hard process.

L 20 I I

xo and kg are starting values at the proton, at the low energy scale g, Qo ~ 1GeV.
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Two-level hierarchic: D, are also multi-integrals!

Dk(T, 33) = /dZ dxo 'Dkk(T,ZlTQ) Dk;(TO,iCO)(Sa;:ZxO—F
1 n T 1 1 1
11 /de Or;>7_1 /dzj /dzj] /da:o
I=1r 0 0 0

[©.@)
+ > > /dznﬂ
n
X ®k3k3(7-7 Zn_|_]_|7-n) [ H P(];)’L'ki—l (ZZ) Dki_lkii_l (Tiy Z’L|TZ—1)]

n=1 kn_l...,klko
B Ay _ 1 k£
1=1

n
X Dy, (70, 330)5(33 — 20 Zn+1 H ziZ¢>, k=k,.
=1

n
T X=X=XZ |_|szj Xn-1

n+l 0 n+l
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Two-level hierarchic: D, are also multi-integrals!

Dk(T, 33) = / dZ dxo 'Dkk(T,ZlTQ) Dk(70,$0)5mzzx0—|—

n T 1 1 1

11 /de Or; 71 /dzj /dzj] /da:o
=1z, 0 0 0

n
X ‘Dk‘k' (7-7 Zn_|_]_|7-n) [ H P(];)’L'ki—l (Z’L) j)kii_lki_l (Tia ZZ|7_’L—1)]
=1

1

S SREED SR e

n=1 kn—l""klk()
B kg _ 1 ko £

n
X Dy, (70,580)5(33 — x0Zn+1 H ziZz), k=kn,

=1

5 (r,70) < n T ; .
Dy (1, Z|10) = 7{5221 +> 11 /dTi Or;>7i_4 /dzz' 2Py (2i)0z=[7_ zz}
0

n=1 z':lTO

NOTATION:
® Pure bremss. Sudakov formfactor ® (7, 79) = (7 — 70)(ar + bg In¢)

® Kernel x coupling const: P(,?le (2) = B2_op"’1’“2 (2)01—2>¢

® Other: by, = %Bkk, ap = 52—0141«1«7
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CMC =Non-Markovian constrained MC, for full DGLAP

® Neglecting temporarily w# inside the segments Dy, gluon bremsstrahlung
sub-level, we can itegrate/sum analytically over all variables of the sub-level

The overall (energy) z-constraint §-function is eliminated using [ dzo

°

® \We are left with the 3n + 1-dim. integrals (n= No. of flavor changes) of the
flavor-changing super-level, the INTEGRAND FOR FFO@mM is the following:
) R(z)
Dy(1,2) = x_lf dzZ / dR1 Z(R1)¥k 2 (T=70) 10 Dy (10, 20 )+
v 0
oo N R(x)
+$_1Z Z H /de 97’j>7j—1 / dRn+1 Z(Rn+1)wk_2eak(T_Tn)
n=1 Ky 1--2k1ko i=17 )
b #hn_ 17 £k1#ko
" 1 R(x;41/2;)
% [H / dz; Pgik¢—1(zi) / dR; Z(Ri)wkz’—l_26(1]{:,,;_1(7_%'_7_1'—1)
i=1p7 2

X xODkO (7‘0, :CQ),

R(Zi)=(1—2)i-1 7770 z(Ry =1 —exp ((bp, _, (s — 7-1)) " In Ry),
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CMC algorithm of type I, full DGLAP

CMC algorithm description

® Generate super-level variables n, k;, 7; Z; and z; using FO@Mgeneral purpose
MC tool.

® Limiting no. of flavor transition (G — Q and Q — G)ton =0, 1,2, 3 is enough, for
the ~ 0.2% precision.

® For each pure gluon bremsstralung segment defined by Z; and (7;, 7_1),
1 =1,2,...,n+ 1, gluon emission variable (z§z), TJ("), i=1,2,...,n) are
generated using previously described dedicated CMC.

» \Weight= 1 events available!

Numeric tests
® |n the next slides we show numerical results from such a non-Markovian CMC

Evol CMC for “evolution” ranging from Q = 1GeV to Q = 1TeV, z > 1073,

They are compare them with the results of the Markovian uncontrained evolution of
our own Evol FMC
Evol FMC was previously x-checked with QCDnunil6 and ACHEB

The greement of Nonmarkovian Evol CMC and Markovian Evol FMC is excelent,
~ 0.25%.

oo o
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Test of non-Markovian Constrained MC, DGLAP case
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n=0.G—d

n = 1. Q — G and any no. of gluon emissions out of ) and G,
n=2.G— Q — G, etc.

n=3Q—G—Q — G, elc.

n=4.G—Q — G — Q — G, etc. “Total” is the sum of n = 0, 1, 2, 3, 4.

Evolution from proton at Q = 1GeV up to 1TeV. New non-Markovian CMC (EvolCMC)
agrees with unconstrained Markovian MC (EvolFMC) to within ~ 0.25%! (100M)
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Test of non-Markovian Constrained MC, DGLAP case
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n=00Q—Q

n = 1. G — @ and any no. of gluon emissions out of () and G,

n=2.G—Q —G—Q,elc.

n=3G—0Q—G—Q,elc.

n=4.Q —G— Q — G— Q,etc. “Total” is the sum of n =0, 1, 2, 3, 4.

Evolution from proton at Q = 1GeV up to 1TeV. New non-Markovian CMC (EvolCMC)
agrees with unconstrained Markovian MC (EvolFMC) to within ~ 0.25%! (210M)
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Other recent works on CMC algorithms and PLANS

9

L 3 I

Alternative non-Markovian CMC algorithm class Il exists, see contribution to Loops
and Legs, Zinnowitz April 2004.

So far implemented for pure bremsstrahlung only.

Higher dimensionality of the Foam integrand in the full DGLAP case:-(

Algorithm CMC class | (of this presentation) is already implemented/tested for the
z-dependent ag((1 — 2)Q).
This is relevant for parton showers and modeling the CCFM evolution.

The unintegrated parton distributions Dy (kr,x) are already calculated from the
one-loop type CCFM model (Placzek& Golec) in the Markovian EvolFMC framework.
This will be ported to the non-Markovian EvolCMC.

M S NLL corrections are already implemented in the Markovian EvolFMC
(W.Placzek and K.Golec) and will be ported to the non-Markovian CMC soon.

Generally our aim are MC models/programs for unintegrated PDFs for W and Z
production at LHC based on CCFM-type evolution, but keeping compatibility with the
DGLAP as close as possible.

It will take a few months to have first complete MC. (Next summer?)
This is, of course, very close to CASCADE approach.
Fitting F»(Q, ) of DIS with our CMCs at some point? Yes.
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