Discussion Benchmark cross sections

Motivation

Different theoretical approaches for for heavy flavour cros-sections ach approach typically available both for HERA and LHC in incomplete set of those with full differential prediction reported here:

Model	HERA γ^p	HERA DIS	LHC
LO(massless)+PS	Pythia	Pythia, Lepto	Pythia
LO+PS+MI	Pythia/JIMMY		Pythia/JIMMY
LO(massive)+PS	Pythia	Rapgap, Aroma	Pythia
CCFM MC (Cascade)	X	X	X
NLO	FMNR	HVQDIS	HVQMNR
FONLL	X		X
NLO(massive)+PS	(MCaNLO ?)		MCaNLO
Massless (KK)	X		X
K_T factorization			X
Enhancment at low-x		?	X
Saturation at Low-x Kutak			X

Motivation 2

It would be nice to have in the workshop proceedings prediction from all these different models for a given set of observables:

- Direct way to compare features of different models and show regions of (un)compatibility
- show in a single place how the same approach works for HERA and LHC
- are two models equivalent for LHC but not for HERA and vice-versa?
- Collect all available prediction in a "reference" book

To do this we need to:

- Define a standard set of observables, the "benchmark cross sections", typically differential cross sections after some cut
- Ask theorists or in general who has access ro the programs to calculate prediction for the different models
- predictions should have uncertainty bands or at least provide a set of curves for different (reasonable) parameter choices

Which cross sections?

Not too far from experimental observables

Not too complicate

i.e don't repeat exactly expt. cuts (as in JetWeb)

Basic observables such as $d\sigma/dp_T$ in a given y range

Interesting observables to spot particular regions where models may differ

the number of cross sections should not be too large (<10)

Quark or hadron cross sections or both? (I think hadron)

Cross Sections for LHC

Differential cross sections ($d\sigma/dX$, where X:)

Basic:

- 1.1) p_T central rapidity |y| < 2.5 (ATLAS/CMS)
- 1.2) p_T large rapidity 2.5 < |y| < 4.5 (LHC-B)
- 1.3) y for $p_T > 2$ GeV ? (LHC-B/Alice)

need special Alice range?
different cuts for charm and b?

Correlations:

observables sensitive to intrinsic k_T and g splitting:

- **1.4)** $p_T(Q + \bar{Q})$
- **1.5)** $\Delta \phi(Q \bar{Q})$

observables sensitive to 4b production:

1.6)
$$\Delta y(QQ)$$

Cross Sections for HERA (γ^p)

Basic cross sections:

2.1) p_T for |y| < 1.5, 130 < W < 300GeV, $Q^2 < 1$ GeV² (range of existing D^* mesurements)

2.2) y for $p_T > 2$ GeV, 130 < W < 280GeV, $Q^2 < 1$ GeV²

More complex vars:

 x_{γ} is interesting but beyond a very simple implementation of Heavy Hadron cross sections

Correlations:

2.3) $p_T(Q+\bar{Q})$ and/or

2.4) $\Delta \phi (Q - \bar{Q})$

(in which range?)

. . .

Cross Sections for HERA (DIS)

Here it's more complex: many variables $(x, Q^2 \text{ and } y, p_t, \phi \text{ of the HQ})$ I see two possible choices:

- a) plot y, \bar{p}_T for ranges in x, Q^2 ?
- b) fix a range in y, p_T and plot x, for different Q^2 ?

Option b) is probably better:

1.1-4)
$$x$$
 for $Q^2 = 1, 10, 100, 1000$ GeV², $p_T > 1.5$, $|y| < 1.5$ similar to "visible" F_2^c

with or without EW corrections? (without)

Let's discuss and see ...

 $14 \times 2(b+c)$ cross section proposed, too many?

remove some, propose some new

fix standard PDFs, α_S , m_b , m_c ?

find who does what!