

Simulation of Multiple Interactions in the Sherpa Framework

Stefan Höche Dresden University of Technology

- The Basics
- Simple Model: SHERPA 1.0 vs. PYTHIA 6.2
- Impact Parameters
- Implementation Issues

The Basics

hadronic xs in parton model

$$\sigma_{\text{hard}} = \int dx_1 \int dx_2$$
$$\cdot f_1(x_1, Q^2) f_2(x_2, Q^2) \hat{\sigma}_{12}$$

 $\frac{\hat{\sigma}}{\mathrm{d}\hat{t}}$ to LO divergent for $\hat{t} \to 0$

 $m{\wp}$ $\sigma_{
m hard}$ comparable with $\sigma_{
m ND}$ (non-diffractive xs) for $\hat{t}_{
m min} pprox 2 - 4\,{
m GeV^2}$

 $\sigma_{
m hard}$ must not exceed $\sigma_{
m ND}$

need multiple scatterings mean multiplicity:

$$\langle n \rangle = \frac{\sigma_{\text{hard}}}{\sigma_{\text{ND}}}$$

Sjöstrand and Zijl, Phys. Rev. D36 (1987)

Monte Carlo method:

distribute hard interactions like

$$f(p_{\perp}) = \frac{1}{\sigma_{\rm ND}} \frac{d\sigma_{\rm hard}(p_{\perp})}{dp_{\perp}}$$

related problem:

 $\Rightarrow \sigma_{hard}$ requires regularization!

Simple Model: SHERPA 1.0 vs. PYTHIA 6.2

• sample setup: $p\bar{p}$, $E_{cms}=1.8\,\mathrm{TeV}$,

- compare multiplicity of hard scatterings in underlying event
- multiplicity agrees with PYTHIA result

Simple Model: SHERPA 1.0 vs. PYTHIA 6.2

 $m{\wp}$ sample setup: $par{p}, \quad E_{
m cms} = 1.8\,{
m TeV}, \ K_T$ clustering algorithm

- compare shapes of "jets" from underlying event at ME level
- shapes agree with PYTHIA results

Impact Parameters

- assume extended hadrons
 - ightharpoonup profile function $ho(\mathbf{x})$ overlap of two colliding hadrons at impact parameter b

$$\mathcal{O}(\mathbf{b}) = \int dt d^3 \mathbf{x} \, \rho_1(\mathbf{x_1}) \, \rho_2(\mathbf{x_2})$$

mean multiplicity:

$$\langle n(\mathbf{b}) \rangle = k\mathcal{O}(\mathbf{b})$$

- $n(\mathbf{b})$ Poissonian distributed for each \mathbf{b} total interaction probability $P_{\mathrm{int}}(\mathbf{b})$ given by Poissonian
- \rightarrow determine k from constraint

$$\frac{\sigma_{\text{hard}}}{\sigma_{\text{ND}}} = \frac{\int d^2 \mathbf{b} \langle n(\mathbf{b}) \rangle P_{\text{int}}(\mathbf{b})}{\int d^2 \mathbf{b} P_{\text{int}}(\mathbf{b})}$$

Monte Carlo method:

distribute interactions like

$$f(p_{\perp}, b) = f_c f(b) \frac{1}{\sigma_{\rm ND}} \frac{d\sigma_{\rm hard}(p_{\perp})}{dp_{\perp}}$$

apply veto algorithm for profiles with tail to infinity (e.g. Gaussian)

• regularize $\sigma_{\rm hard}$:

naive: • remove singularity via

$$\sigma_{
m hard}
ightarrow \sigma_{
m hard} \cdot rac{p_{\perp}^4}{(p_{\perp}^2 + p_{\perp 0}^2)^2}$$

adjust hard scale

$$\alpha_s^2(p_\perp^2) \to \alpha_s^2(p_\perp^2 + p_{\perp 0}^2)$$

Impact Parameters

 $oldsymbol{\circ}$ sample setup: ${
m par{p}}, \quad E_{
m cms} = 1.8\,{
m TeV},$ Gaussian profile

- compare multiplicity of hard interactions in underlying event
- enhanced multiplicity (agrees with PYTHIA)

Implementation Issues

SHERPA implementation of the multiple interaction formalism

- ullet all $2 \rightarrow 2$ QCD processes included
- color flow adjusted such that string length is minimized in partonic final state
- showering allowed for partons from hard underlying event

→ New SHERPA module AMISIC++

(A Multiple Interaction Simulation In C++)

Implementation Issues

 $oldsymbol{\circ}$ sample setup: $p\bar{p}, \quad E_{\mathrm{cms}} = 1.8 \, \mathrm{TeV},$ Gaussian, K_T clustering

- compare jet shapes (excluding the 2 hardest jets)with / without shower
- harder jets from underlying event

Outlook

Done:

- Multiple interaction treatment included in SHERPA 1.0
 - Impact parameter independent model
 - Impact parameter dependent model
 - Parton showering for multiple interactions
 - Colour flow adjustment

Missing:

- Tune
- Model for soft underlying event