

New p_{\perp} -ordered showers and

Interleaved Multiple Interactions

Torbjörn Sjöstrand¹ + Peter Skands²

Department of Theoretical Physics, Lund University

¹ now at CERN

² at FNAL from 1 Nov.

hep-ph/0408302

also JHEP 03 (2004) 053 [hep-ph/0402078]

Transverse-momentum-ordered showers

1) Define
$$\begin{array}{l} {\mathsf{p}}_{\perp {\mathsf{evol}}}^2 = z(1-z)Q^2 = z(1-z)M^2 \text{ for FSR} \\ {\mathsf{p}}_{\perp {\mathsf{evol}}}^2 = (1-z)Q^2 = (1-z)(-M^2) \text{ for ISR} \\ \end{array}$$

2) Evolve all partons downwards in $p_{\perp evol}$ from common $p_{\perp max}$

$$d\mathcal{P}_a = \frac{dp_{\perp \text{evol}}^2}{p_{\perp \text{evol}}^2} \frac{\alpha_{\text{S}}(p_{\perp \text{evol}}^2)}{2\pi} P_{a \to bc}(z) dz \exp\left(-\int_{p_{\perp \text{evol}}}^{p_{\perp \text{max}}^2} \cdots\right)$$

$$d\mathcal{P}_b = \frac{dp_{\perp \text{evol}}^2}{p_{\perp \text{evol}}^2} \frac{\alpha_s(p_{\perp \text{evol}}^2)}{2\pi} \frac{x' f_a(x', p_{\perp \text{evol}}^2)}{x f_b(x, p_{\perp \text{evol}}^2)} P_{a \to bc}(z) dz \exp(-\cdots)$$

Pick the one with *largest* $p_{\perp evol}$ to undergo branching; also gives z.

- 3) Kinematics: $Derive\ Q^2=\pm M^2$ by inversion of 1), but then interpret z as $energy\ fraction$ (not lightcone) in "dipole" rest frame, so that $Lorentz\ invariant$ and matched to matrix elements. Assume yet unbranched partons on-shell and shuffle (E,\mathbf{p}) inside dipole.
- 4) Iterate \Rightarrow combined sequence $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > \ldots > p_{\perp min}$.

Interleaved Multiple Interactions

• Competition: (for PDF and phase space)

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}}\right) \; \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}'}\right) \mathrm{d}p_{\perp}'\right)$$

⇒ one interleaved sequence of MI and ISR

FSR: no competition so not required (but nice for ME merging)

Regularization procedure:

$$\alpha_{\rm S}(p_{\perp}^2) \frac{{\rm d}p_{\perp}^2}{p_{\perp}^2} \to \alpha_{\rm S}(p_{\perp 0}^2 + p_{\perp}^2) \frac{{\rm d}p_{\perp}^2}{p_{\perp 0}^2 + p_{\perp}^2}$$

common for MI (quadratically) and ISR by colour neutralization $p_{\perp 0} \approx$ 2–3 GeV energy-dependent (Tune A)

Availability:

in PYTHIA 6.312 on www.thep.lu.se/ \sim torbjorn/Pythia.html **but** pp/p \overline{p} **only** (technical + physics reasons)

Data comparisons:

usually comparable with Tune A (for better or worse), but still in need of good tuning and detailed tests, and ...

$\ldots \langle p_{\perp} \rangle (n_{\mathsf{Ch}})$ problematical

⇒ how are final-state colours correlated?

• Next steps:

test and tune, especially colour flow interleave FSR intertwine = $(3 \rightarrow 3) + 2$ interacting partons with same ancestry