

The ALICE Data Challenge 2004 and the ALICE Distributed Analysis Prototype

Andreas Peters September 29, 2004 CHEP'04 Interlaken

A.Peters

Alice DC'04 Goals and Structure

- Alice DC'04 Phases
 - Phase 1 Distributed Production
 - Phase 2 Distributed Mixing/Reconstruction
 - Phase 3 Distributed Analysis
- Alice DC'04 Performance
- Alice Distributed Analysis Prototype

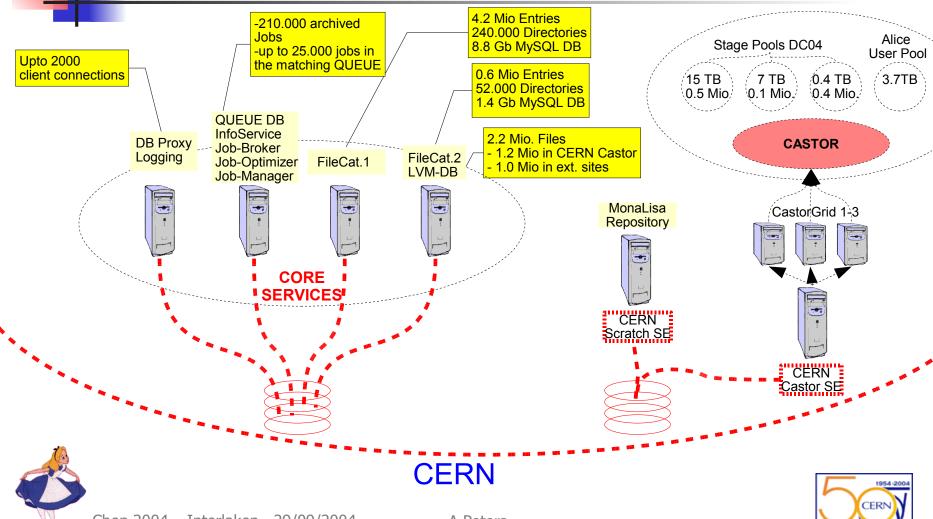
DC'04 Goals and Structure

- Test and validate the ALICE Offline computing model:
 - Produce and analyse ~10% of the data sample collected in a standard data-taking year
 - Use the entire system: AliEn, AliROOT, LCG, Proof...
 - test of the software and physics analysis of the produced data for the Alice PPR
- Structure:
 - Logically divided in three phases:
 - Phase 1 Production of underlying Pb+Pb events with different centralities (impact parameters) + production of p+p events
 - Phase 2 Mixing of signal events with different physics content into the underlying Pb+Pb events
 - Phase 3 Distributed analysis

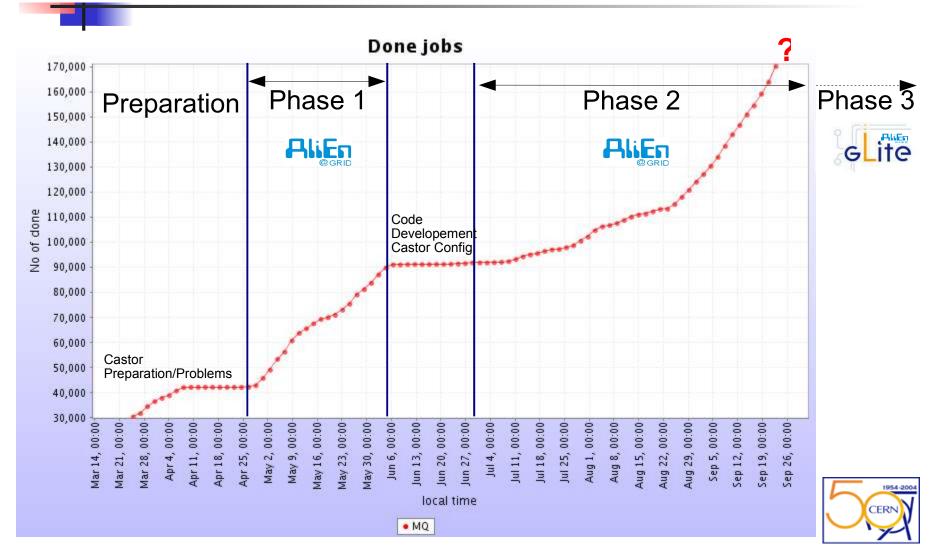
Chep 2004 – Interlaken , 29/09/2004

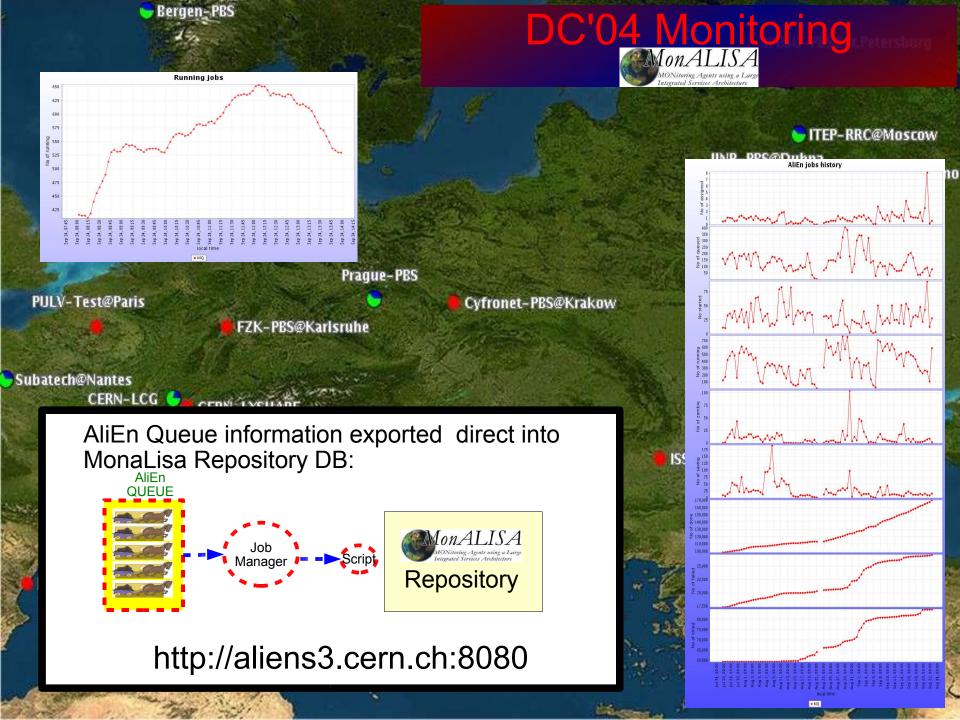
CER

DC'04 Principles


- Principles:
 - True GRID data production and analysis: all jobs are run on the GRID, using only AliEn for access and control of native computing resources the LCG resources
 - In phase 3 gLite+PROOF (ARDA E2E Prototype for ALICE)
 - Software AliRoot/GEANT3/ROOT/gcc3.2 libs distributed by AliEn
 - Used platforms
 - GCC 3.2 + i686 32-bit Cluster
 - GCC 3.2 + ia64 Itanium Cluster

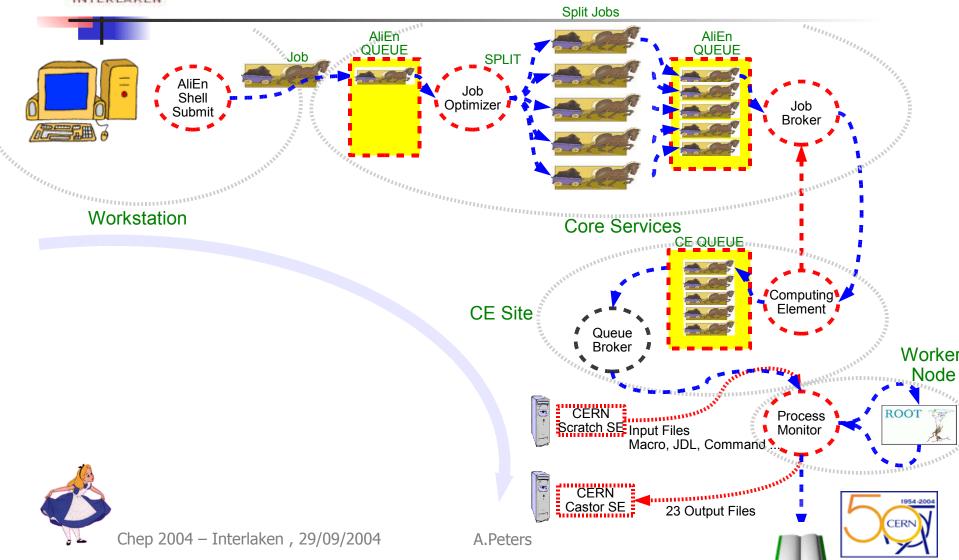
DC'04 Hardware – central components -




Chep 2004 – Interlaken , 29/09/2004

A.Peters

DC'04 Timeline during the last 6 months



Phase 1 Job Creation and Flow

Catalogue

Phase 1 Processing

- Production of underlying Pb+Pb events with different centralities (impact parameters) + production of p+p events
 - Number of Jobs:
 - 6 x 20.000 events (type cent1/per1-5) = 56.000 jobs
 - 22.000 jobs á 8 hours (cent 1)
 - 22.000 jobs á 5 hours (per 1),
 - 12.000 jobs á 2.5 hours (per2-per5)
 - Number of files:
 - ~36 files per job
 - AliEn file catalogue: ~2.0 million files
 - CERN Castor: 1.3 million
 - File size:
 - Total: 26 TB (split on two CASTOR stagers)

Chep 2004 – Interlaken , 29/09/2004

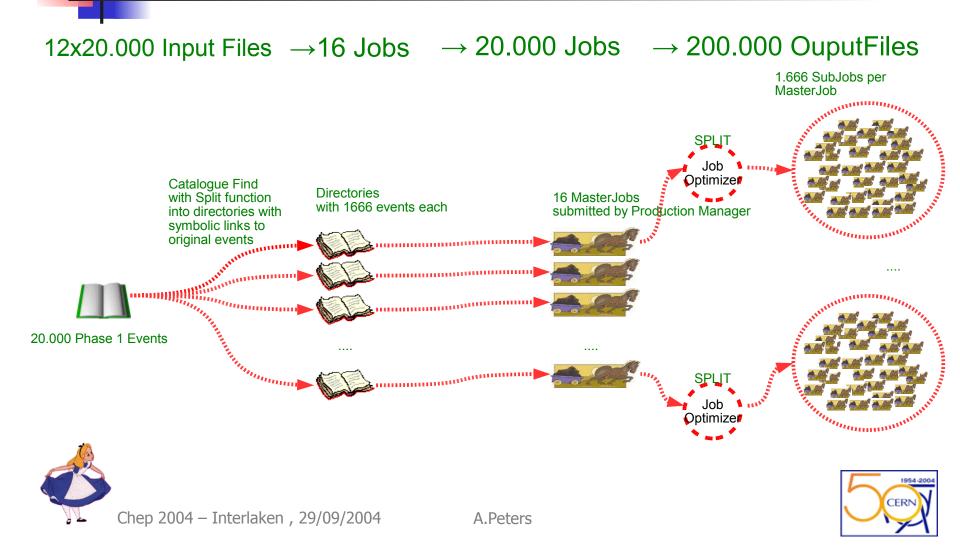
°FR

Phase 2 - Mixing

- Mixing of signal events with different physics content into the underlying Pb+Pb events (underlying events are reused several times)
- Test of:
 - Standard production of signal events
 - Stress test of network and file transfer tools
 - Storage at remote SEs, stability (crucial for phase 3)
- Conditions, jobs ...:
 - 62 different conditions
 - 340K jobs, 15.2M events
 - 10 TB produced data
 - 200 TB data transfer from CERN
 - 500 MSI2K hours CPU

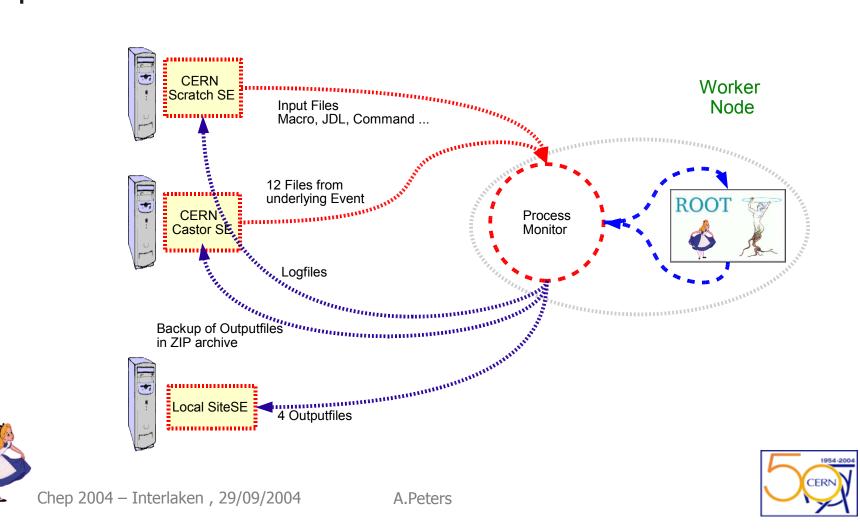
1954-2004

Repartition of tasks (physics signals):

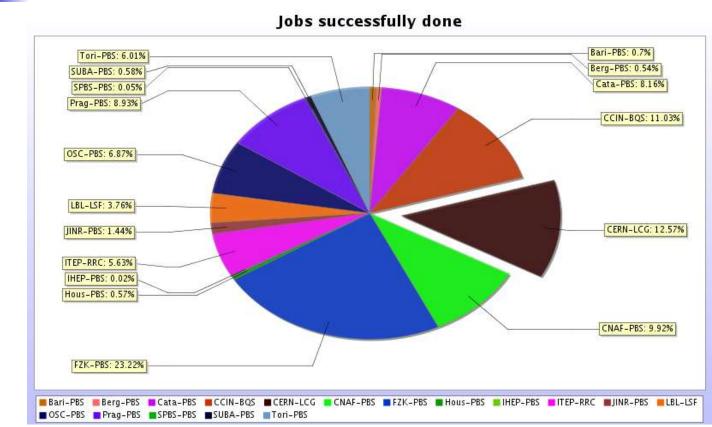

1954-200

CERN

Signal	No.of signal events	Number of				
	per underlying	jobs				
Jets (un- and quenched) cent 1		PHOS	cent 1		
Jets PT 20-24 GeV/c	5		Jet-Jet PHOS		1	20000
Jets PT 24-29 GeV/c	5	1666	Gamma-jet PHOS		1	20000
Jets PT 29-35 GeV/c	5	1666	Total signal		40000	40000
Jets PT 35-42 GeV/c	5	1666	D0	cent 1		
Jets PT 42-50 GeV/c	5	1666	DO		5	20000
Jets PT 50-60 GeV/c	5		Total signal		100000	20000
Jets PT 60-72 GeV/c	5		Charm & Beauty	cent 1	100000	20000
Jets PT 72-86 GeV/c	5			Cent	5	20000
Jets PT 86-104 Gev/c	5	1666	Charm (semi-e) + J/psi			
Jets PT 104-125 GeV/c	5	1666	Beauty (semi-e) + Y		5	20000
Jets PT 125-150 GeV/c	5	1666	Total signal		200000	40000
Jets PT 150-180 GeV/c	5		MUON	cent 1		
Total signal	399840	39984	Muon coctail cent1		100	20000
Jets (un- and quenched)per 1		Muon coctail HighPT		100	20000
Jets PT 20-24 GeV/c	5		Muon coctail single		100	20000
Jets PT 24-29 GeV/c	5	1666	Total signal		6000000	60000
Jets PT 29-35 GeV/c	5	1666	MUON	per 1		
Jets PT 35-42 GeV/c	5	1666	Muon coctail per1		100	20000
Jets PT 42-50 GeV/c	5		Muon coctail HighPT		100	20000
Jets PT 50-60 GeV/c	5	1666	Muon coctail single		100	20000
Jets PT 60-72 GeV/c	5	1666	Total signal		6000000	60000
Jets PT 72-86 GeV/c	5				0000000	00000
Jets PT 86-104 Gev/c	5	1666	MUON	per 4	F	20000
Jets PT 104-125 GeV/c	5				5	20000
Jets PT 125-150 GeV/c	5				100	20000
Jets PT 150-180 GeV/c	5		Total signal		2100000	40000
Total signal	399840	39984	Grand total		15239680	339968



Phase 2 Job Creation Mixing in Jet Events



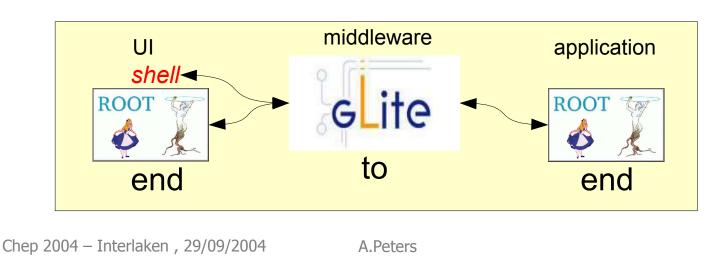
Phase 2 Job Data Flow

Phase 2 Site Participation <u>16 AliEn sites + LCG</u>

Chep 2004 – Interlaken , 29/09/2004

Phase 1 + 2 (3) Lessons learned

- Image: "The present CASTOR version cannot keep more than 500.000 files staged on disk (per stager)"
 - Avoid small files and avoid to delete files in CASTOR
- Monitoring tools and control functions are the most essential tool for running large scale productions and identification of problems and bottlenecks
- production usage is a huge simplification of the multiuser usage ⇒ stronger reglementations are needed

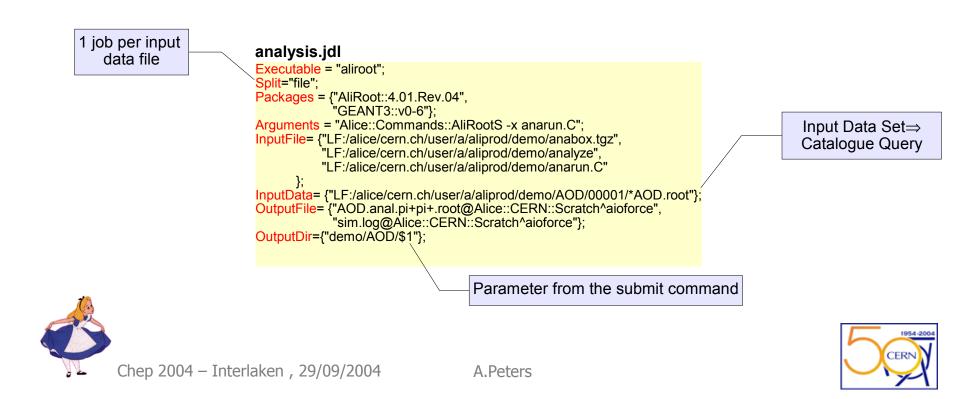


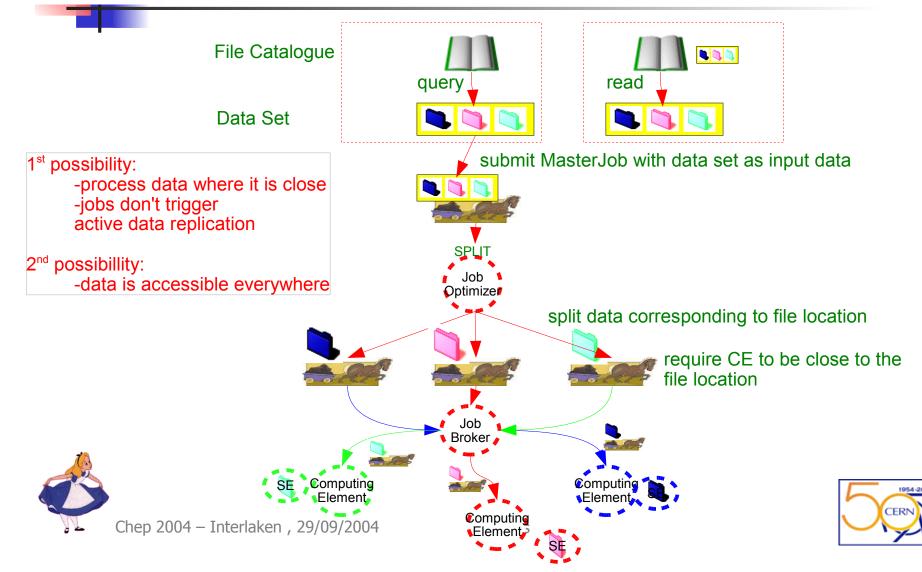
Phase 3 – Distributed Analysis E2E Protoype of Alice

- analysis approach:
 - ALICE experiment provides the UI (ROOT) and the analysis application
 - GRID middleware provides all the rest

Phase 3 – Distributed Analysis analysis model

- analysis model:
 - creation
 - users produce 'data sets' for analysis on the fly with catalogue and metadata queries
 - users use already produced 'data set' objects stored in a catalogue or locally
 - execution: analysis tasks are produced from
 - GRID shell commands for batch analysis
 - **ROOT** prompt
 - interactive analysis mode (PROOF)
 - batch analysis mode (w. job splitting)


Chep 2004 - Interlaken, 29/09/2004


Phase 3 – Distributed Analysis Analysis Execution

From a grid-enabled shell: glite submit analysis.jdl try-01

Phase 3 – Distributed Analysis Analysis Model – Batch Analysis

Phase 3 – Distributed Analysis Analysis Execution

TDSet* dset = new TDSet("TTree","mydataset"); dset->AddQuery("/glite/alice/","AOD.root","z<100"); dset->SetProcessMode(kInteractive); // ^ kBatch dset->Process("mymacro.C");

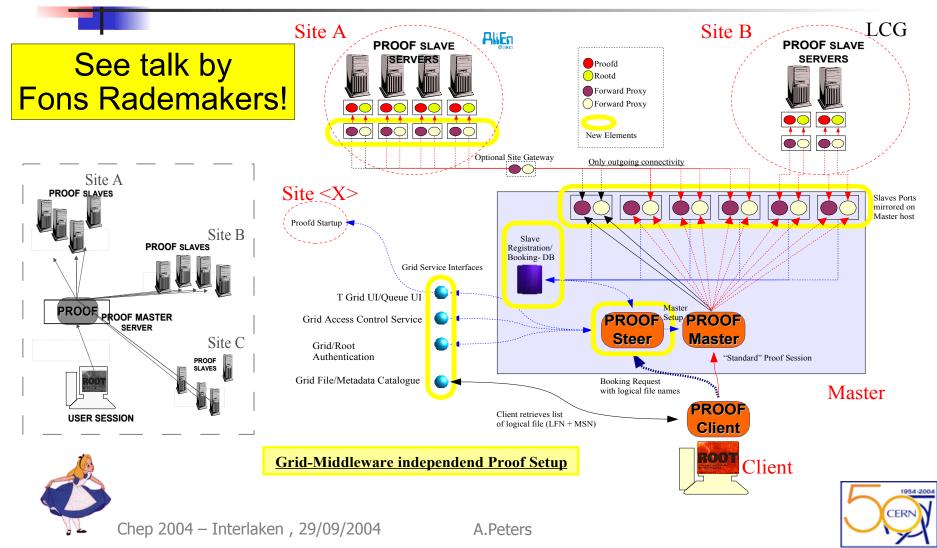
// to store the dataset for repetitive sessions:
dset->Write();

Phase 3 – Distributed Analysis Analysis Model – Batch Analysis

Processing Scheme:

- Production of Data Sets
 ⇒ already possible as catalogue queries with AliEn/gLite
- Data Sets are splitted into subsets and submitted as separated jobs by a Job Optim.
 ⇒ already possible with AliEn/gLite
- Results are merged by a concurrent job which collects the output files
 already possible with AliEn/gLite

Remark: should add parallel and sequential job chains into gLite JDL syntax JobChain = {"0:/glite/chep04/analysis.jdl","1:/glite/chep04/merge.jdl"}


CER

Chep 2004 – Interlaken , 29/09/2004

Phase 3 – Distributed Analysis Interactive Analysis-PROOF

Summary+Outlook

- DC'04
 - Successfully running since 9 months with AliEn and continuing until the end of 2004
 - Many unexpected pitfalls and bottlenecks have been found, cured or circumvented
 - Permanent improvement of the system with the increasing requirements
 - System got more functionality, control and monitoring tools (master job handling, resubmission, MonaLisa...)
 - multi-user experiences give input for further developments
 - Demonstrated scalability of the AliEn design
 - Experienced gain and loss by federation of GRIDs (AliEn using LCG)
 - See poster of S.Bagnasco
 - The offline computing model has been tested and validated during the DC'04
 - ALICE will try to use the gLite prototype for Phase III (Analysis) from October on

Chep 2004 – Interlaken , 29/09/2004

