

2004 LHC Days, Split, Croatia, Oct. 5 - 9, 2004 Werner Lustermann, ETH Zurich On behalf of the CMS ECAL collaboration

- 1) Introduction
- 2) On Detector Electronics
- 3) Optical Links
- 4) Token Rings
- 5) Off Detector Electronics
- 6) Integration
- 7) Results SM10

Φ	Introduction
Detector	
Crystal	conversion of particles energy into light
Photo detector	conversion of light into charge
On Detector Electronics	
Amplifier	Amplify and shape the charge pulse
ADC	Digitize the pulse shape
Digital Signal Processing	Data storage/formatting, trigger sum calculation
Data Transfer	

Optical Links

Data transmission to off detector electronics

Data Acquisition

Off Detector Electronics

Data transmission/formatting, selective readout

Split 5-9 Oct, 2004

Barrel Photo-Detectors

Nominal gain: 50 changes 3.3 %/V

- \Rightarrow Bias voltage stable to \pm 20 mV
- Two APD's are grouped into a capsule to compensate for different gains
- 50 capsules are powered from the same HV source (CAEN)
- The spread of the gains within a given HV channel is less than 1%, achieved by sorting the ADP's
- Radiation affects only APD leakage current $(I_{leak}) \Rightarrow 200 \ \mu A \Leftrightarrow 27 \ V$
- Measure I_{leak} and correct HV
 appropriately
- Limit short circuit current: I_{short} ~ 2.7 mA / capsule ⇒ 2 shorts / HV channel o.k.

Capsule directly glued on the rear phase of crystals

Trigger Tower Electronics

Split 5-9 Oct, 2004

LHC Days

CN

- Low Voltage distribution to VFE
- High Voltage distribution to APD
- High Voltage filter network

- Flexible Kapton cables to APD and temperature sensor
- Ground connection to the grid

Detector Control Unit (DCU):

- Measure the leakage currents of the APD capsules
- Measure the temperature of the sub-module: Each 10th capsule contains a 100kΩ thermistor, dR/dT = -4%
 ⇒ stabilize Temperature to ± 0.5 K (APD and Xtal T dependence -4.3%/deg)

LVDS buffer: Receives and distributes the 40 MHz LHC clock

All components are custom ASIC's in 0.25µm technology

MGPA

Multi Gain Pre-Amplifier (MGPA):

- Developed by Imperial College
- Rad. Tol. 0.25 µm technology

Full scale:

- 60pC = 1.7 TeV (EB)
- 16pC = 3.5 TeV (EE)

Gains: 1, 6 and 12 (±10%)

Linearity: 0.1% full scale

Pulse shape matching: 0.1% Noise (measured):

- 8000 electrons gain 6 and 12
- 28000 electrons gain 1

- Programmable charge pulse injection using a DAC
- Pedestal DAC for each gain

AD41240:

- Developed by ChipIdea and CERN
- Rad. Tol. 0.25 µm technology

4 ADC:

- 40 MHz
- 12 bit
- ENOB measured 10.9

Integrated logic:

- Provides operation in different modes
- ECAL mode: automatic gain selection

ADC LSB gain 12:

- 34 MeV (EB)
- 71 MeV (EE)

ADC

 $\mathbb{C}N$

FE Card

- 5 Strip sum Fenix (pipeline buffer for data)
- 1 Trigger Fenix (trigger primitives)
- 1 Data Fenix (event formatting)
- Slow control LVR (read voltages and currents)
- Slow control VFE (read APD I_{leak} and capsule temperature sensor)

ECAL reuses optoelectronic components from the CMS Tracker

Digital Opto-Hybrid

Token Ring Link Boards

Two token ring boards together with fibers and housing

Token ring cables before being arranged

Split 5-9 Oct, 2004

Off Detector Electronics

ECAL Event Size transferred to DAQ should be 100 KB on average (~2KB per DCC).

Full ECAL event size is 1.86MB -> Data reduction techniques must be applied to achieve a reduction factor of ~20 in ECAL data:

Zero Suppression (done in the DCC)

Suppression of crystals with energy lower than ~ 60MeV (Barrel) and ~ 300 Mev(end-caps)

Selective Readout:

- use 2 energy thresholds for trigger tower energy (E_T)
- low threshold (~600MeV): $E_T > L_T$? Read the tower

•High threshold (~2GeV): $E_T > H_T$? Read tower and all its neighbours across super module boundary

otherwise do not read

DCC

70 Optical Receivers (800Mbds):

- 68 Trigger towers (1 SM)
- 2 for light monitoring

Data integrity checks

Event formatting

Bandwidth to DAQ:

- Maximum 528 Mb / s
- Average 200 Mb / s

Data Reduction:

- Selective readout
- Zero suppression
- ⇒ Suppression factor ~20

Split 5-9 Oct, 2004

LHC Days

Split 5-9 Oct, 2004

LHC Days

