

The Status of the CMS Electromagnetic Calorimeter

R M Brown On behalf of the CMS ECAL Community

- Introduction
- Design objectives and technology choices
- Description and status:
 - > Crystals
 - Photo-detectors
 - On-detector electronics
 - Off-detector electronics
 - Laser monitoring system
 - Mechanical construction and assembly
- Pre-shower
- Test beam results
- Calibration strategy
- Construction and installation schedule
- Summary

CCLRC ECAL design objectives

High resolution electromagnetic calorimetry is a central design feature of CMS

Benchmark process: $H \rightarrow \gamma \gamma$

 $\sigma_{\rm m}/{\rm m} = 0.5 [\sigma_{\rm E_1}/{\rm E_1} \oplus \sigma_{\rm E_2}/{\rm E_2} \oplus \sigma_{\theta}/\tan(\theta/2)]$ Where: $\sigma_E / E = a / \sqrt{E \oplus b \oplus c / E}$

Aim:			Barrel	End cap
Stochastic term: a = (p.e. stat, shower fluct, photo-			2.7% detector, la	5.7% teral leakage)
Constant term: b = (non-uniformities, inter-calibra		0.55% ition, longitu	0.55% Idinal leakage)	
Noise: (electronic, pile-up)	Low <i>L</i>	c=	155MeV	770 MeV
	High \mathcal{L}	,	210 MeV	915MeV

$(\delta \theta \text{ limited by interaction vertex measurement})$

Challenges & Choices

Challenges:

- Fast response (25ns between bunch crossings)
- High radiation doses and neutron fluences

 (10 year doses: 10¹³ n/cm², 1kGy at η=0
 2x10¹⁴ n/cm², 50kGy at η =2.6)
- Strong magnetic field (4 Tesla)
- On-detector signal processing
- π^0/γ discrimination
- Long term reproducibility

Choices:

- Lead tungstate crystals
- Avalanche photodiodes (Barrel), Vacuum phototriodes (Endcaps)
- Electronics in 0.25 μm CMOS
- Pb/Si Preshower detector in Endcap region
- Laser light monitoring system

CCLRC Lead tungstate properties

Fast light emission: ~80% in 25 ns Peak emission ~425 nm (visible region) Short radiation length: $X_0 = 0.89$ cm Small Molière radius: $R_M = 2.10$ cm Radiation resistant to very high doses

Temperature dependence ~2.2%/ $^{\circ}$ C \rightarrow Stabilise to $\leq 0.1^{\circ}$ C Formation and decay of colour centres in dynamic equilibrium under irradiation \rightarrow Precise light monitoring system Low light yield (1.3% Nal) \rightarrow Photodetectors with gain in mag field

Crystal production

Crystals are supplied by the Bogoroditsk Techno-chemical Plant (BTCP) in Russia All crystals are tested for:

- Radiation Hardness
- Light Yield

Transmission at 420nm

- Physical Dimensions
- Light yield uniformity

Delivered quality uniformly high

So far 28800 Barrel crystals delivered (47%).

Light Yield

However: problems have been encountered with production costs & schedule (For example: planned change to 2 crystals/ingot could not be implemented)
→Not possible to meet the CMS schedule with BTCP alone

- Action underway to engage additional suppliers
 Potential producers asked to propose a minimal quantity (2 SM + ½ Dee)
 plus optional additional quantities.
- Tenders opened on August 17th
 - All potential producers responded and submitted conforming bids
 - Sum of offers exceeds delivery rate needed to meet CMS schedule.
- Crystals from potential new producers under evaluation

Photodetectors

Barrel - Avalanche photodiodes:

Two 5x5 mm² APDs/crystal

- Gain: 50
- QE: ~75%
- Temperature dependence: -2.4%/^oC

Endcaps: - Vacuum phototriodes: B-field orientation favourable for VPTs (Axes: $8.5^{\circ} < |\theta| < 25.5^{\circ}$ wrt to field) More radiation resistant than Si diodes (with UV glass window)

- Active area ~ 280 mm²/crystal
- Gain 8 -10 at B = 4 T
- Q.E. ~ 20% at 420 nm
- Temperature dependence small

Photodetector status

Barrel - Avalanche photodiodes: Delivery complete Testing almost complete

Endcaps: - Vacuum phototriodes:

4 - year production schedule Test 100% at 1.8 T, $-30^{\circ} < \theta < +30^{\circ}$ Test 10% at 4.0 T, 15°

8800 (57% of total) delivered8601 (98% of delivery) tested at 1.8 T1054 (12% of delivery) tested at 4.0 T

VPTs from RI Situation as of 01-Oct-04: 14000 Delivered: Tested in UK at 1.8T: 8601 12000 ested in UK at 4.0T: 1054 (Goal = 10%) Integrated Delivery of V 000 0008 00000 00000 00000 4000 2000 2006 2003 2005 2002 2004 Year

VPTS for CMS Electromagnetic Endcap Calorimeter

On-detector electronics

VFE architecture for single channel 0.25 µm IBM CMOS process

Trigger primitives computed on the detector Command & control via token ring (à la CMS Tracker) Modularity: Trigger Tower (25 channels in Barrel) - 5 VFE Boards (5 channels each)

- 1 FE Board

- 1 Fibre sending trig primitives (every bunch Xing)
- 1 Fibre sending data (on Level1 accept)

CLRC On-detector electronics: status

2002 & 2003: readout architecture changed \rightarrow 4 new chips in 0.25 μ m

MGPA (Multi-gain preamplifier): Successful engineering run - 48 wafers being packaged (enough for full ECAL)

AD41240 (Custom designed 12-bit ADC):10.9 bit ENOB achieved (meets specification)17 wafers packaged, remaining 31 wafers due in October

FENIX (2 functions - generate trigger primitives

read out data on level 1 accept)

21 wafers being packaged, remaining 27 due in October

Buffer chip (LVDS/LVCMOS between ADC/FENIX): 'Pacing item': 48 wafers in October - enough for Barrel

- Chip yields (80-95)% in engineering runs

- Successful pre-series of all on-detector electronics (enough for 3 'Supermodules')

- Full production in progress

Electronic noise

CLRC **Off-Detector electronics**

Prototypes produced for: Data Concentrator Card (DCC) Clock & Control System (CCS) Half Trigger Concentrator Card (TCC) On target to use DCC/CCS in test beam CCS preproduction launched Selective Readout Processor (SRP) - design now well advanced Off-Detector electronics production in 2005

TCC24

DCC and Tester

Laser light monitoring (2)

Light is injected through fibres into the front (Barrel) or rear (Endcap) of each crystal

Resolution before irrad^{<u>n</u>} / after irrad^{<u>n</u>} and correction

Split 08/09/04

Construction

 $\Delta \eta \, x \, \Delta \phi = 0.0175 \, x \, 0.0175$

Dimensions: ~ $30 \times 30 \times 220 \text{ mm}^3$ (24.7 X⁰) $\Delta \eta \times \Delta \phi = 0.0175 \times 0.0175 - 0.05 \times 0.05$

Split 08/09/04

CLRC

Construction: Endcaps

Regional Centres: CERN and RAL

Supercrystal: 25 crystals

Dee (1/2 endcap): 3662 crystals

Production status

Backplates:

'Alveolas':

Environment screen:

Crystals:

4 completed (100%) 2 delivered to CERN

450 completed (80%)

Being ordered

~300 Preproduction crystals delivered

Supercrystals: 3 prototypes built

- performance confirmed in test beam

Split 08/09/04

R M Brown - RAL

Preshower detector

Rapidity coverage: 1.65 < $|\eta|$ < 2.6 (End caps) Motivation: Improved π^{0}/γ discrimination

- 2 orthogonal planes of Si strip detectors behind $2 X_0$ and $1 X_0$ Pb respectively
- Strip pitch: 1.9 mm (60 mm long)
- Area: 16.5 m^2 (4300 detectors, 1.4×10^5 channels)

High radiation levels

CLRC

- Dose after 10 yrs:
- ~ 2 x 10¹⁴ n/cm²
- •~60kGy
- → Operate at -10°C

CCLRC Construction: Preshower

Assembly status

Delivery of sensors:

ELMA (Russia) - 1446/1800 BEL (India) – 500/1000 ERSO (Taiwan) – 436/1200

Hamamatsu/Greece – 1170/1000 →3552/5000 (71%) good sensors

VFE Electronics:

PACE-3 (preamp/shaper + memory) & K-chip (data concentrator) in 0.25 μm CMOS: Prototypes work well before / after irradiation

Support cones:

Successful trial installation on HCAL Endcap

Split 08/09/04

Split 08/09/04

R M Brown - RAL

Calibration strategy

CCLRC Barrel Construction Schedule (1)

CCLRC Barrel Construction Schedule (2)

CCLRC EE Construction Schedule

CLRC Installation Schedule

May 2005: September 2005: January 2006: May - October 2006: April 06 - Feb 2007: Dec 07 - Feb 2008: Feb - March 2008:

- Delivery of installation tooling
- Installation of 1 or 2 Supermodules for surface magnet test
 - EB+/- installation on surface
- EB- Installation in cavern
 - Cabling and commissioning of EB+ and EB-
 - EE+/ES+ Installation and commissioning

EE-/ES- Installation and commissioning

Summary

- High resolution electromagnetic calorimetry is a central design feature of CMS
- The construction of the Barrel ECAL is proceeding well
- Procurement of all major components is in hand for the Endcap ECAL
- Crystal delivery is limiting the schedule for both Barrel and Endcap
 Good progress is being made with actions to address this
- The change in readout architecture has been an outstanding success
- The Pre-shower detector is on course for completion as planned
- A calibration strategy has been developed that avoids the requirement of measuring every Supermodule/Dee in an electron beam
- Test beam results confirm the ECAL should meet its ambitious design goals