Lepton Flavor Violation, Leptogenesis and the LHC

Reinhold Rückl

Institut für Theoretische Physik und Astrophysik Universität Würzburg

In collaboration with F. Deppisch, H. Päs, A. Redelbach (GSI)

2004 LHC Days, Split

R. Rückl

Lepton Flavor Violation,

2004 LHC Days, Split, 1

Neutrino Oscillations

neutrino masses and mixing

physics beyond the standard model

- heavy Majorana neutrinos
- grand unification
- lepton flavor violation
- leptogenesis

role of collider searches?

- MSSM + 3 right-handed neutrino singlet fields ν_R
- superpotential $W \supset W_{\nu} = \frac{1}{2}\nu_R^{cT}M\nu_R^c + \nu_R^{cT}Y_{\nu}L \cdot H_2$
- EWSB ightarrow Dirac mass $m_D = Y_
 u \langle H_2
 angle \ll$ Majorana mass scale M_R
 - neutrino mass matrix $\frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D^T \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$

light neutrinos: $M_{\nu} = -m_D^T M^{-1} m_D \sim \frac{\langle H_2 \rangle^2}{M_R}$ heavy neutrinos: $M \sim M_R$

• diagonalization in flavor space

$$U^{T}M_{\nu}U = \operatorname{diag}(m_{1}, m_{2}, m_{3})$$
$$U = \operatorname{diag}(e^{i\phi_{1}}, e^{i\phi_{2}}, 1)V(\theta_{12}, \theta_{13}, \theta_{23}, \delta)$$

masses and mixing angles from experiment

Slepton Mass Matrix

$$m_{\tilde{l}}^2 = \begin{pmatrix} m_{\tilde{l}_L}^2 & (m_{\tilde{l}_{LR}}^2)^{\dagger} \\ m_{\tilde{l}_{LR}}^2 & m_{\tilde{l}_R}^2 \end{pmatrix} = \tilde{m}_{MSSM}^2 + \begin{pmatrix} \delta m_L^2 & (\delta m_{LR}^2)^{\dagger} \\ \delta m_{LR}^2 & \delta m_R^2 \end{pmatrix}$$

flavor non-diagonal terms generated by RG-running from M_{GUT} to M_R

neutrino Yukawa coupling matrix ($R = R^T$ undetermined complex matrix)

 $Y_{\nu} = \frac{1}{v \sin \beta} D\left(\sqrt{M_i}\right) R D\left(\sqrt{m_j}\right) U^{\dagger}$

for degenerate M_i and real R: $Y_{\nu}^{\dagger}LY_{\nu} = \frac{M_R}{v^2 \sin^2 \beta} V \cdot D(m_i) \cdot V^{\dagger} \ln \frac{M_{GUT}}{M_R}$

R. Rückl

Charged Lepton Flavor Violation

 $\sigma(l_i^+ l_j^-) \propto \frac{|(\delta m_L)_{ij}^2|^2}{\tilde{m}^2 \Gamma_{\tilde{l}}^2} \sigma(e^+ e^- \to \tilde{l}_a^+ \tilde{l}_b^-) Br(\tilde{l}_a^+ \to l_j^+ \tilde{\chi}_1^0) Br(\tilde{l}_b^- \to l_i^- \tilde{\chi}_1^0) \propto M_R^2$

SUSY Parameters

Scenario	$m_{1/2}/{ m GeV}$	m_0 /GeV	$\tan eta$	A_0 /GeV	sign μ
B'	250	60	10	0	+
C'	400	85	10	0	+
G'	375	115	20	0	+
l'	350	175	35	0	+
SPS1a	250	100	10	-100	+

mSUGRA benchmark models

- B', C', G', I': *M. Battaglia et al., hep-ph/0306219*
- SPS1a: *H.-U. Martyn, LC-PHSM-2003-071*

Neutrino Input

$$\Delta m_{12}^2 = 6.9^{+0.36}_{-0.36} \cdot 10^{-5} \text{ eV}^2$$
$$\Delta m_{13}^2 = 2.6^{+1.2}_{-1.2} \cdot 10^{-3} \text{ eV}^2$$
$$\tan^2 \theta_{12} = 0.43^{+0.47}_{-0.22}$$
$$\tan^2 \theta_{23} = 1.10^{+1.39}_{-0.60}$$
$$\tan^2 \theta_{13} = 0.006^{+0.001}_{-0.006}$$

- central values from *M. Maltoni et al., PRD68(2003)113010*
- 90% C.L. errors as anticipated for running/proposed experiments
- Dirac phase unconstrained
- absolute mass scale $m_1 \leq 0.03 \text{ eV}$
- degenerate Majorana masses, real R-matrix $18 \rightarrow 8$ parameters $(m_i, \theta_i, \delta, M_R)$

Rare Decays

SUSY scenario SPS1a

Slepton Pair Production

$$\sigma(e^+e^- \to \mu^+e^-(\tau^+\mu^-) + 2\tilde{\chi}_1^0)$$

SUSY scenario SPS1a, $\sqrt{s}=500$ GeV, unpolarized

scatter plots: impact of uncertainties in neutrino data

Simulation I

$e\mu$ final states

SUSY scenario SPS1a, $\sqrt{s} = 500$ GeV, unpolarized, 500 fb⁻¹

H.-U. Martyn (2004)

R. Rückl

Prospects for $e\mu$ -channel

correlation of signals

SUSY scenarios C', G', B', SPS1a, I', $\sqrt{s} = 800$ GeV

for SPS1a: $Br(\mu \rightarrow e\gamma) = 10^{-13}$ (PSI expt.) $\Rightarrow \sigma(e\mu + 2\tilde{\chi}_1^0) = 3 \cdot 10^{-3}$ fb

Simulation II

$\tau\mu$ final states

SUSY scenario SPS1a, $\sqrt{s} = 500$ GeV, unpolarized, 500 fb⁻¹

H.-U. Martyn (2004)

Prospects for $\tau\mu$ -channel

correlation of signals

SUSY scenarios C', B', SPS1, G', I', $\sqrt{s} = 800$ GeV

for SPS1a: $\sigma(\tau\mu + 2\tilde{\chi}_1^0) = 1$ fb (LC expt.) $\Rightarrow Br(\tau \to \mu\gamma) = 5 \cdot 10^{-9}$

Leptogenesis

generation of lepton asymmetry in out-of-equilibrium decays of N_1 later on conversion to baryon asymmetry via sphaleron processes

 $\eta_B = d \, a_{sph} \epsilon \, \kappa_f = (6.3 \pm 0.3) \times 10^{-10}$ from CMB

• $d = \text{dilution factor due to } \gamma \text{ production } T_{\not\!\!L} \to T_{\text{rec}} = \frac{1}{78}$

• a_{sph} = fraction of *L*-asymmetry converted to *B*-asymmetry = $\frac{8}{23}$

•
$$\epsilon = \text{CP} \text{ asymmetry} = \frac{\Gamma(N_i \to h_2 + l) - \Gamma(N_i \to \overline{h_2} + \overline{l})}{\Gamma(N_i \to h_2 + l) + \Gamma(N_i \to \overline{h_2} + \overline{l})}$$

• κ_f = efficiency factor (washout processes, Boltzmann equations)

Favorable Scenario

• $M_1 \ll M_2 \ll M_3$, i.e. L-violation in N_1 decays • $\sqrt{\Delta m_{12}^2} < \tilde{m}_1 = v_2 \frac{(Y_{\nu} Y_{\nu}^{\dagger})_{11}}{M_1} < \sqrt{\Delta m_{23}^2}$

Buchmüller, Di Bari, Plümacher, hep-ph/0406014

•
$$\epsilon_1 \simeq -\frac{3}{8\pi} \frac{M_1}{v_2^2} \frac{\sum_i m_i^2 \operatorname{Im} \left(R_{1i}^2\right)}{\sum_i m_i \left|R_{1i}\right|^2} < \frac{3}{8\pi} \frac{M_1}{v_2^2} m_3$$

Constraints from Leptogenesis

successfull baryogenesis with $M_1 < 10^{11}$ GeV to avoid overabundance of gravitinos

gravitino problem in big bang nucleosynthesis requires $T_R < 10^9 \text{ GeV}$

 $\Rightarrow M_1 < 10 \ T_R < 10^{10} \text{ GeV for } m_{3/2} = 1 \text{ TeV}$

Constraints from Radiative Decays

- $x_{2,3} \simeq n\pi$
- $0 \le x_1 \le 2\pi$
- $10^{-3} < y_i < \mathcal{O}(1)$
- successfull leptogenesis
- $\Rightarrow M_3 \lesssim 10^{13} \text{ GeV}$
 - $x_{2,3} = n\pi$
 - $10^{-3} < y < \mathcal{O}(1)$
 - successfull baryogenesis
 - solid (dashed): $y_i = 0.01(0.1)$

 $\Rightarrow x_1$

searches for lepton flavor violation?

- rare radiative decays $Br(\tau \rightarrow \mu \gamma) \simeq 10^{-8}$ Serin, Stroynowski, ATLAS Internal Note (1997)
- slepton production $\tilde{g} \rightarrow \tilde{q} \rightarrow \chi_2 \rightarrow \tilde{l}l \rightarrow \chi_1 + \tau \mu$ Carvalho, Ellis et al., hep-ph/0206148 Hisano et al., PRD65(2002) Hinchliffe, Paige, PRD63(2001), hep-ph/0010086 Agashe, Graesser, hep-ph/9904422

Conclusion: Observation of LFV may be possible at the LHC largest signal probably in $\tau - \mu$ channel urge more detailed study