Physics Beyond SM at the LHC (ATLAS)

Sten Hellman, Stockholm University
on behalf of the ATLAS collaboration

Why go beyond the Standard Model?

1. Neutrinos have mas Not covered
2. Elektroweak symmetry bre Not covered

- Higgs phenomenology
- Technicolor
- other theories with no fundamental scalars...

3. The hierarchy problem

- Supersyr Not covered
- "Little Higgs" moders
- Theories with more than three spatial dimensions

The hierarchy problem:

assuming the Standard Model is an effective low-energy theory with an ultraviolet cut-off at Λ

The most important radiative corrections to the Higgs-mass comes from loops containing the top-quark, gauge bosons and the higgs itself:

$$
\begin{array}{ll}
\delta m_{h}^{2}=\frac{3}{8 \pi^{2}} \lambda_{t}^{2} \Lambda^{2} & \text { from top } \\
\delta m_{n}^{2} \propto a_{w} \Lambda^{2} & \text { from gauge bosons } \\
\delta m_{n}^{2} \approx \frac{\lambda}{16 \pi^{2}} \Lambda^{2} & \text { from higgs }
\end{array}
$$

So e.g. for $\Lambda=10 \mathrm{TeV}$ the lowest order
contributions are
$\cdot \approx(2 \mathrm{TeV})^{2}$ from top-loops

- $\approx-(750 \mathrm{GeV})^{2}$ from W/Z loops
$\cdot \approx-(1.25 \mathrm{mh})^{2}$ from Higgs loops
=> extreme fine-tuning (at all orders) needed to stabilize the Higgs mass at $\approx 200 \mathrm{GeV}$

Four ways out:

1 - Learn to live with it: we live in a universe which is fine-tuned to one part in 10^{17}
2 - There is no fundamental scalar
Technicolor

3 - Stabilize the Higgs mass through additional symmetries
Supersymmetry
Little Higgs
4 - Move the cut-off down
Extra dimensions

The littlest Higgs Model

- the small Higgs mass results from non-exact symmetry
\rightarrow pseudoGoldstone boson
(pions have mass because quark masses and e.m. break chiral symmetry)
- quadratic divergences occur at two-loop level $\sim 10 \mathrm{TeV}$
\rightarrow model is not complete UV completion required at $\sim 10 \mathrm{TeV}$
- Low energy EW constraints rather severe
- FCNC's at $\sim 100 \mathrm{TeV}$
- New particle content

$$
\begin{aligned}
W_{H}^{ \pm}, Z_{H}, \gamma_{H} & : \sim 1 \mathrm{TeV} \\
T: & \sim 1 \mathrm{TeV} \\
\phi^{ \pm \pm}, \phi^{ \pm}, \phi^{0} & : \sim 10 \mathrm{TeV}
\end{aligned}
$$

New particles

$\mathbf{Z}_{\mathrm{H}}, \mathbf{W}_{\mathrm{H}}^{ \pm}, \mathbf{A}_{\mathrm{H}}$: heavy $\mathrm{Z}, \mathbf{W}^{ \pm}, \gamma$

$$
\begin{gathered}
M<6 \mathrm{TeV} \cdot\left(\frac{M_{H}}{200 \mathrm{GeV}}\right)^{2} \\
\mathrm{M}_{\mathrm{h}}=120 \mathrm{GeV} \mathrm{M}<2.2 \mathrm{TeV} \\
\mathrm{M}_{\mathrm{h}}=200 \mathrm{GeV} \mathrm{M}<6 \mathrm{TeV}
\end{gathered}
$$

arise from $[\mathrm{SU}(2) \otimes \mathrm{U}(1)]^{2}$ symmetry
$\phi^{0}, \phi^{+}, \phi^{++}$: triplet of heavy Higgses
$\mathrm{M}<10 \mathrm{TeV}$
note: the Standard Model h is still there !

Pair production

Single production:

So concentrate on single production

Search for the heavy T quark

Couplings: $\quad \lambda_{1}\left(i Q h t_{R}+f T_{L} t_{R} h h^{\mathrm{t}}\right)+\lambda_{2} f\left(T_{L} T_{R}\right)$
$\rightarrow 3$ free parameters which can be choosen as m_{t}, m_{T}, and $\lambda_{1} / \lambda_{2}$

Widths: $\quad \Gamma_{(\mathrm{T} \rightarrow \mathrm{th})}=\Gamma_{(\mathrm{T} \rightarrow \mathrm{tz})}=\frac{1}{2} \Gamma_{(\mathrm{T} \rightarrow \mathrm{bW})}=\frac{\kappa^{2}}{32 \pi} M_{T}$

$$
\kappa=\frac{\lambda_{1}^{2}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}
$$

Search in all three modes!

$$
\mathrm{T} \rightarrow \mathrm{Zt} \rightarrow \mathrm{I}^{+} \mathrm{I}^{-} \mathrm{I} \mathrm{vb}
$$

The Z is reconstructed using opposite sign, same-flavour lepton pair.

The W in the top decay is reconstructed assuming $p_{T}{ }^{\nu}=E_{T}{ }^{\text {miss }}$, and solving for W momentum.

Main background is Ztb and WZ

- 3 isolated leptons, hardest with $p_{T}>100 \mathrm{GeV}$, rest with p_{T} $>40 \mathrm{GeV}$.
- No other lepton with $\mathrm{p}_{\mathrm{T}}>15$ GeV
- $E_{T}{ }^{\text {miss }}>100 \mathrm{GeV}$
- At least one b-tagged jet.

For $\lambda_{1} / \lambda_{2}=1$ (2) $\mathrm{M}_{\mathrm{T}}<1050$ (1400) GeV
is observable ($5 \sigma,>10$ events)

$\mathrm{T} \rightarrow \mathrm{Wb} \rightarrow \mathrm{Ivb}$

- At least one charged lepton with
$p_{T}>100 \mathrm{GeV}$.
- At least one b-tagged jet with $\mathrm{p}_{\mathrm{T}}>100 \mathrm{GeV}$.

The W is reconstructed assuming $\mathrm{p}_{T}{ }^{\nu}=\mathrm{E}_{T}{ }^{\text {miss }}$, and solving for W momentum.

Main background is tt , single t and QCD production of Wbb

For $\lambda_{1} / \lambda_{2}=1$ (2) $\mathrm{M}_{\mathrm{T}}<2000$ (2500) GeV is observable ($5 \sigma,>10$ events)

- Not more than two jets with $\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$
- Mass of the pair of jets with highest $p_{T}>200 \mathrm{GeV}$
- $\mathrm{E}_{\mathrm{T}}^{\text {miss }}>100 \mathrm{GeV}$

$$
\mathrm{T} \rightarrow \mathrm{ht} \rightarrow \mathrm{bb} \mathrm{I} v \mathrm{~b}
$$

This study assumes that the higgs has been found and its mass determined, here we take $m_{h}=120$ GeV

- At least one isolated e or μ with $p_{T}>100 \mathrm{GeV}$.
- Three jets with $p_{T}>130 \mathrm{GeV}$.
- At least one b-tagged jet
- Reject the event if there is one di-jet combination with $70<\mathrm{m}_{\mathrm{jj}}<90 \mathrm{GeV}$

One di-jet mass combination in $90-130 \mathrm{GeV}$.

The W is reconstructed assuming $\mathrm{p}_{\mathrm{T}}{ }^{\nu}=\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}$, and solving for W momentum.

Main background is tt

For $300 \mathrm{fb}^{-1}$ the significance is 4σ

- more than enough to perform consistency checks and constraing BR, but marginal for discovery

For lower m_{T} the kinematics of the signal and tt background become very similar.
Cuts have to be relaxed (70 GeV for lepton and 90 GeV for jets).
For $300 \mathrm{fb}^{-1}$ the significance is 3σ

Heavy gauge bosons:

An isolated e^{+}and e^{-}with
$\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and
$|\eta|<2.5$

$$
\mathrm{W}_{\mathrm{H}} \rightarrow \mathrm{I}_{\mathrm{V}}
$$

- one isolated electron with $p_{T}>200 \mathrm{GeV}$,
$|\eta|<2.5$
- $E_{T}{ }^{\text {miss }}>200 \mathrm{GeV}$

$$
\mathrm{Z}_{\mathrm{H}} \rightarrow \mathrm{Zh} \rightarrow \mathrm{I}^{+} \mathrm{l} \text { bb }
$$

Analysis relies on higgs mass being known (here assumed to be 120 GeV)

- Two leptons with invariant mass between 76 and 106 GeV
- Two b-tagged jets with $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$, $|\eta|<2.5, \Delta R<1.5$ and invariant mass between 60
 and 180 GeV .
(For $\mathrm{M}=2 \mathrm{TeV}$ the jets from the higgs decay coalesce into one, then use the invariant mass of that one jet)

$$
\mathrm{W}_{\mathrm{H}} \rightarrow \mathrm{~Wh} \rightarrow \mathrm{I}_{\mathrm{V}} \mathrm{bb}
$$

- One isolated lepton with $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$ and $|\eta|<2.5$
- E_{T} miss $>25 \mathrm{GeV}$

$$
\mathrm{W}_{\mathrm{H}} \rightarrow \mathrm{~Wh} \rightarrow \mathrm{qq} \gamma \gamma \quad \mathrm{Z}_{\mathrm{H}} \rightarrow \mathrm{Zh} \rightarrow \mathrm{qq} \gamma \gamma
$$

- Two photons with $p_{T}>40,25 \mathrm{GeV}$ in $|\eta|<2.5$
- $m_{r v}$ within 2σ of $m_{\text {higgs }}$
- jets combined in pairs and closest to m_{w} selected and constrained to m_{w} if $p_{T}{ }^{w}>200 \mathrm{GeV}$
- Alternatively one jet with mass compatible with m_{w} used

$$
\mathrm{W}_{\mathrm{H}} \rightarrow \mathrm{~Wh} \rightarrow \mathrm{qq} \gamma \gamma \quad \mathrm{Z}_{\mathrm{H}} \rightarrow \mathrm{Zh} \rightarrow \mathrm{qq} \gamma \gamma
$$

These channels can also be studied without reconstructing the W or Z, the $\mathrm{p}_{\mathrm{T}}{ }^{\gamma}$ distribution displays a "Jacobian peak"

Summary: Discovery range for gauge bosons from little Higgs

The coupling $Z_{H} Z h$ is proportional to $\cot (2 \theta)$ Folding this with the dependance of the coupling at production give the relative rates (normalised at $\cot (\theta)=0.5$

The regions to the left of the curves are accessible after $300 \mathrm{fb}^{-1}$
$\Phi^{++} \rightarrow I^{+}+$
Signal can be extracted from $\mathrm{W}^{+} \mathrm{W}^{+}$fusion processes:

- Two positive leptons with $p_{T}>$ 150, 20 GeV and $|\eta|<2.5$
- $\left|\mathrm{p}_{\mathrm{T} 1}-\mathrm{p}_{\mathrm{T} 2}\right|>200 \mathrm{GeV}$
- $\left|\eta_{1}-\eta_{2}\right|<2.0$
- E_{T} miss $>50 \mathrm{GeV}$
- Two "tag jets",
$\mathrm{p}_{\mathrm{T}}>15, \mathrm{E}>200,100$ $\left.\mathrm{GeV}, \mid \eta_{1}-\eta_{2}\right]>5$

The other solution
 - bring the cut-off down!

- string theory requires 10 dimensions!
- the only theoretical approach towards a quantum description of gravity: consistency of quantum mechanics and general relativity
- includes supersymmetry
- the extra dimensions assumed to be compactified.
- initially the assumption was that compactification radius was order of MPL^{-1}
- then it was realised that this could be as large as a millimeter!

3 models studied in some detail (there are more!):

- ADD scenario:
several compacitfied, but large (>> 1/TeV), dimensions, gravity propagates in bulk, SM in brane.
- Small extra dimensions:

Only fermions confied to brane, gauge-bosons propagate in a number of small $(\approx 1 / \mathrm{TeV})$ compactified dimensions.

- Randall-Sundrum model:

1 extra dimension y with non-factorizable metric, 5D space of -ve curvature, bounded by 2 branes

- SM brane (TeV) at $\mathrm{y}=\pi \mathrm{r}_{\mathrm{c}}$
-Planck brane at $\mathrm{y}=0$

ADD scenario:

\Rightarrow conjecture:

- SM particles localized in 4D brane
- gravity propagates in the bulk of higher dimension
($1 / \mathrm{r}^{2}$ law not verified for dimensions $<0.2 \mathrm{~mm}$)

two parameters:
- number of extra (compactified) dimensions: δ
- new fundamental mass scale M_{D} :

$$
M_{P l_{(4)}}^{2}=M_{P l_{(4+\delta)}}^{\delta+2} R_{C}^{\delta} \equiv M_{D}^{\delta+2} R_{C}^{\delta}
$$

$$
M_{D} \sim \mathrm{TeV} \rightarrow R_{C} \sim \mathrm{~mm}(\text { for } \delta=2)
$$

Gravitons \& Kaluza-Klein states:

- in the bulk: gravitational interaction \rightarrow massless G
- in 4D: KK states $G^{(k)}, m_{k}{ }^{2}=m_{0}{ }^{2}+k^{2} / R_{C}{ }^{2}$
- coupling: universal \& weak ($\left.1 / \mathrm{M}_{\mathrm{PI}(4)}\right)$, but large \# of states

Direct production at LHC:

Signature is high p_{T} jet and large $E_{T}{ }^{\text {miss }}$
main backgrounds: jet + Z $(\rightarrow v v)$

$$
\text { jet + W }\left(\rightarrow l_{v}\right)
$$

- require jet and E_{T} miss above $50 / 100 \mathrm{GeV}$ at high / low L
- no isolated lepton within $|\eta|<2.5$
- $\delta \Phi\left(\right.$ ETmiss, $\left.^{\text {jet }}{ }_{2}\right)>0.5$

δ	$\begin{gathered} M_{D}^{\max }(\mathrm{TeV}) \\ \mathrm{LL}, 30 \mathrm{fb}^{-1} \end{gathered}$	$\begin{aligned} & M_{D}^{\max }(\mathrm{TeV}) \\ & \mathrm{HL}, 100 \mathrm{fb}^{-1} \end{aligned}$	$\begin{gathered} M_{D}^{\min } \\ (\mathrm{TeV}) \end{gathered}$
2	7.7	9.1	~ 4
3	6.2	7.0	~ 4.5
4	5.2	6.0	~ 5

Uncertainty in $\sigma(Z+j e t s)$ will lower the reach

Reach in M_{D} for γG

δ	$M_{D}^{\max }(\mathrm{TeV})$ $\mathrm{HL}, 100 \mathrm{fb}^{-1}$	$M_{D}^{\text {min }}$ (TeV)
2	4	~ 3.5

Characterization of the model:

Precise measurement of cross-section:

- difficult:
case ($\delta=2, \mathrm{M}_{\mathrm{D}}=5 \mathrm{TeV}$) very similar to the case ($\delta=4, \mathrm{M}_{\mathrm{D}}=4 \mathrm{TeV}$) for instance
- not (yet) investigated in details
\rightarrow measure both M_{D} and δ
Run at a different CME:

- good discrimination if
- 5% accuracy on $\sigma(10) / \sigma(14)$
-> $50 \mathrm{fb}^{-1} @ 10 \mathrm{TeV}$
- new CME close to 14 TeV (otherwise small overlap of regions allowed by eff. theory)

Virtual exchange of gravitons at LHC:

Signatures: deviations from SM in Drell-Yan X-sections, asymmetries (sensitivity mostly from interference terms, KK exchange $\propto \mathrm{M}_{\mathrm{s}}{ }^{-8}$)

ATLAS study:

- partonic cross-sections
- amplitude divergent for $\delta>1$:
naive cut-off at $M_{I I, r y}<0.9 M_{S}$

Signatures: qq,gg $\rightarrow \gamma \gamma$, Il, (WW, tt, ...)

- excess over DY events in di-lepton, di-photon mass distributions
- some s-channel processes not present at tree-level in SM:
\rightarrow more central production for $\gamma \gamma$

[^0]Sten Hellman, Split 2004-10-06
27

Sensitivity for $100 \mathrm{fb}^{-1}$:

Mostly a discovery channel:

- no sensitivity on δ
- w/o specifying UV theory, M_{s} cannot be related to M_{D}

TeV^{-1}-sized extra dimensions

Kaluza-Klein Gauge Bosons

- one extra dimension
- compactified on a S^{1} / Z^{2} orbifold
- radius of compactification small enough \rightarrow gauge bosons in the bulk
- fermions localized on:
— a fixed point (M1 model): invariance under y $\rightarrow-y$
- opposite fixed points (M2 model): under y $\rightarrow \mathrm{y}+2 \pi R$
- Kaluza-Klein spectra for $Z^{(k)}, W^{(k)}: m_{k}{ }^{2}=m_{0}{ }^{2}+\mathrm{k}^{2} \mathrm{M}_{\mathrm{C}}{ }^{2}$
- for $M_{C}=4 \mathrm{TeV}: m_{1}=4 \mathrm{TeV}, \mathrm{m}_{2}=8 \mathrm{TeV}$
look for $\mathrm{pp} \rightarrow \gamma^{(1) / Z^{(1)}} \rightarrow$ I'l$^{+}$on top of SM Drell-Yan

Sensitivity from peak region:

for $100 \mathrm{fb}^{-1}, \mathrm{~S} / \sqrt{ } \mathrm{B}>5, \mathrm{~S}>10$:

$$
M_{C}{ }^{\max }=5.8 \mathrm{TeV}
$$

Optimal reach (using interferences in tail region):

Characterization of the model:

Forward-backward asymetries:
$Z^{(1)}$ or $Z^{\text {' }}$ or RS graviton ??

Randall-Sundrum mode

bulk

KK graviton excitations $\mathrm{G}^{(k)}$

- scale Λ_{π}
- coupling \& width determined by: $\mathrm{c}=\mathrm{k} / \mathrm{M}_{\mathrm{PI}}$
- $0.01<\mathrm{k} / \mathrm{M}_{\mathrm{PI}}<0.1$
- mass spectrum:
$m_{n}=k x_{n} \exp \left(-k \pi r_{c}\right)$

Golden channel: $\mathrm{G}^{(1)} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

- good acceptance
- good energy resolution
- good angular resolution
- also $\mathrm{G}^{(1)} \rightarrow \gamma$

Main features to check:

- universal couplings:
$\mathrm{G}^{(1)} \rightarrow \mu^{+} \mu^{-}, \mathrm{WW}, \mathrm{ZZ}, \mathrm{jj}$
- spin 2
- measure r_{c} ?

Signature: $\mathrm{G}^{(1)} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

Sensitivity

\rightarrow LHC covers completely the interesting regior
B.C. Allanach, K.Odigari, A. Parker, B. Webber JHEP 919 (2000), ditto + M.J.Palmer, A. Sabetfakhri hep-ph/0211205

Spin determination:

spin-2 could be determined (spin-1 ruled out) with $90 \% \mathrm{CL}$ up to graviton mass of 1720 GeV

NB: acceptance at large η - coverage to 2.4-2.5 is essential

- almost no discrimination spin $1 /$ spin 2 for $|\eta|<1.5$

also $G \rightarrow W W, Z Z, j j$, mm, tt, hh

e.g.: for a resonance observed at $\mathrm{m}_{\mathrm{G}}=1.5 \mathrm{TeV}$ in ee channel
 $\Delta \mathrm{m}_{\mathrm{G}}<10.5 \mathrm{GeV}$ (energy scale error) $\Delta \sigma . B \sim 18 \%$
if $\mathrm{k} / \mathrm{r}_{\mathrm{c}}=0.01$ (pessimistic)
$\Rightarrow r_{\mathrm{c}}=(82 \pm 7) \times 10^{-33} \mathrm{~m}!!$

Stabilize $\mathrm{kr}_{\mathrm{c}} \pi \sim 35\left(\mathrm{kr}_{\mathrm{c}} \sim 12\right)$

Goldberger and Wise proposed a mechanism which stabilizes $\mathrm{kr}_{c} \pi$

- introduce a radion: a scalar field representing fluctuations of the distance between the two branes
- radion has mass: $\mathrm{m}_{\mathrm{f}}<\mathrm{m}(\mathrm{KK}=2)$
- higgs-like couplings \Rightarrow mixes with Higgs
- reinterpreting SM Higgs search studies...

For $\mathrm{m}_{\Phi}<2 \cdot \mathrm{~m}_{\mathrm{h}}$:
"easy" to see if $\Lambda=1$, but higher Λ very difficult.
discrimination against standard higgs need study of production cross-section and branching ratios

For $\mathrm{m}_{\Phi}<2 \cdot \mathrm{~m}_{\mathrm{h}}: \quad \Phi \rightarrow \mathrm{hh} \rightarrow \gamma \gamma \mathrm{bb}$
signal:

- similar to MSSM, but with appropriate corrections for width and branching ratios
- consider cases: $\boldsymbol{m}_{\phi}=300,600 \mathrm{GeV}$, $\boldsymbol{m}_{\boldsymbol{h}}=125 \mathrm{GeV}$

> reach: 2.2 TeV or 0.6 TeV for $m \phi=300$ or 600 GeV , respectively, with $30 \mathrm{fb}^{-1}$
backgrounds negligible

- $\quad \gamma \gamma$, with QCD radiation
- $\quad \gamma j$, with jet misidentified as photon

George.Azuelos., D. Cavalli, H. Przysiezniak, L.
Vacavant SN-ATLAS-2002-019

For $\mathrm{m}_{\Phi}<2 \cdot \mathrm{~m}_{\mathrm{h}}: \quad \Phi \rightarrow \mathrm{hh} \rightarrow \tau \tau \mathrm{bb}$, one τ decaying leptonically, other hadronically

Main backgrounds:

- $\mathrm{tt} \rightarrow \mathrm{bW}$ bW, one W decaying leptoincally, other hadroncially
- Z + jets followed by Z \rightarrow tt
- W + jets with W decaying leptonically

> reach: 1.0 TeV for $m_{\phi}=600 \mathrm{GeV}$, with $30 \mathrm{fb}^{-1}$

[^1]
Conclusions:

- There are a number of reasons why we want to extend the Standard Model.
- There is no lack of theoretical suggestions on how to do this, some more contrieved than others.
- Initial studies in ATLAS show that many of the "main-stream" scenarii can be discovered.
- Not less important - specific characteristics of each model can be determined in many cases.

Still....
only experiments will tell - the truth is out there !!

- definition

Black Fores of radius $\mathrm{R}_{\mathrm{R}}<\mathrm{R}_{\sim}$

- object confined in a volume of radius $R_{R}<R_{\sim}$

For $\mathrm{n}+3 \operatorname{dim} ., R_{S}^{(n)}=\frac{1}{\sqrt{\pi} M_{P}}\left[\frac{M_{B H}}{M_{P}}\left(\frac{8 \Gamma\left(\frac{n+3}{2}\right)}{n+2}\right)\right]^{\frac{1}{n+1}}$

$$
M_{P} \sim \mathrm{TeV} \Rightarrow \pi R_{S}^{2} \sim \mathbf{O}(100 \mathrm{pb})
$$

This approximation is contested:

- M. B. Voloshin, PL B518 (2001) 137, PL B524 (2002) 376
- V. S. Rychkov, hep-ph/0401116
- Production at the LHC $\mathrm{R}_{s}(\sqrt{s})$

Dimopoulos et Landsberg, hep-ph/0106295

- Theoretical Uncerqintié - production crosssectignCK Holes

- disintegration
- emission of gravitational radiation (balding phase)
- main phase ? = Hawking radiation, or evaporation
- spin-down phase: loss of angular momentum
- Schwarzschild phase: emission of particles
» quantum numbers conserved?
- Planck phase: impossible to calculate
\Rightarrow new generator, CHARYBDIS
CM Harris, P. Richardson and BR Webber, JHEP 0308 (2003) 033 (hepph/0307305)
- Characteristics

black body radiation: emission of particles
- high multiplicitysten Hellman, Split 2004-10-06
- "democratic" emission
- development af apontecprogenerator:CHARYBDIS
 ph/0307305:
- evaporation
- time evolution
- "grey body" factors (transmission of particles through curved space-time outside horizon)
- planck phase: few hard jets
- ...

- simulation in ATLAS

Japanese group (T. Yamamura, J. Tanaka, et al.)

- selection of spherical events
- $\mathbf{M}_{\mathbf{B H}}$ reconstructed for each event
- reconstruction of $\mathbf{M}_{\mathbf{P}}$ from the cross section $\mathbf{d} \boldsymbol{\sigma} / \mathbf{d} \mathbf{M}_{\mathbf{B H}}$

(Hawking radiation formula)

- TeV-1 Size: Offer models and 1deas...
- virtual g^{*} excitation \Rightarrow enhanced di-jet cross section

ATLAS study in progress...
T. Appelquist, HC Cheng and BA Dobrescu, PR D64 (2001) 035002

- Universal Extra dimensions
- All SM particles in bulk

\Rightarrow conservation of KK number

- unstable: fat brane absorbs unbalanced momentum ${ }^{\circ}$ from KK number violation
- ATLAS study in progress ${ }_{10}$ γ^{*}

$\left.-q^{*} q_{i}^{*} \mathbf{K} \mathbf{P} \mathbf{P}_{\mathbf{o}^{\prime}}+\gamma^{*}\right)\left(\ldots+\gamma^{*}\right)(\rightarrow \gamma \boldsymbol{G}+\gamma \boldsymbol{G}+X)$
C. Macesanu, CD McMullen and S. Nandi

Phys.Lett. B546 (2002) 253

- can be fooled by SUSY
- ATLAS study in progress

b-tagging

Figure 13: Plot showing the tagging efficiency for b-jets as a function of the rejection factor against light quark jets. The upper curve shows the result from the benchmark ATLAS sample of bottom quarks from a Higgs decay of mass 400 GeV produced in association with a W [13]. The lower curve shows the result from the higher energy b-quarks from the $Z_{H} \rightarrow Z h$ sample.

95\% CL exclusion limits for discovery

\rightarrow LHC covers completely the interesting region

ATLAS: B.C. Allanach, K.Odigari, A. Parker, B. Webber JHEP 919 (2000), ditto + M.J.Palmer, A. Sabetfakhri hep-ph/0211205

CMS: C.Collard, M.-C. Lemaire, P.Traczyk, G.Wrochna hep-ex/0207061; I. Golutvin, P.Moissenz, V.Palichik, M.Savina, S.Shmatov

Spin-1 hypothesis rejection:

spin-2 could be determined (spin-1 ruled out) with 90% CL up to graviton mass of 1720 GeV

Spin-1 rejection with 95\% CL

large fraction of interesting region covered by LHC.

ATLAS: B.C. Allanach, K.Odigari, A. Parker, B. Webber JHEP 919 (2000), ditto + M.J.Palmer, A. Sabetfakhri hep-ph/0211205

CMS: C.Collard, M.-C. Lemaire, P.Traczyk, G.Wrochna hep-ex/0207061;
I. Golutvin, P.Moissenz, V.Palichik, M.Savina, S.Shmatov

[^0]: V. Kabachenko, A. Miagkov,
 A. Zenin, ATL-PHYS-2001-012

[^1]: Vacavant SN-ATLAS-2002-019

