
ATLAS Computing Model & Service Challenges

Roger Jones 12th October 2004 CERN

Computing Model

- A new revision started late spring 03
 - Workshop in June 04, input from CDF, DØ and ATLAS
- Very little input so far from some key communities:
 - detector groups on calibration and alignment computing needs
 - Calibration input on 2 October 2004!
 - physics groups on data access patterns
 - **This is a major concern, as some have unrealistic ideas!**
- Still large uncertainties on the final event sizes
 - Huge potential impact on access and on costs!
 - With the advertised assumptions, we are at the limit of available disk
 - RAW data cannot be bigger because of TDAQ bandwidth

RWL Jones, Lancaster University

Computing Resources

Assumption:

- 50 days running in 2007 and 2008 (over the year break)
- Tier-0 has raw+calibration data+first-pass ESD
- CERN 'tier-1' is analysis-only (big tier-2)
- Notes:
 - One-off purchase of disk buffer is needed in first year
 - Allows coherent data sets available while reprocessing
 - Efficiencies folded-in to the numbers
 - Model trys to capture analysis activity
 - The analysis test in phase 3 of DC2 will be important to answer some of the questions
 - Especially hard to quantify year-1 semi-private reprocessing need, but estimates included

The input Numbers

	Rate(Hz)	sec/year	Events/y	Size(MB)	Total(TB)
Raw Data (inc express etc)	200	1.00E+07	2.00E+09	1.6	3200
ESD (inc express etc)	200	1.00E+07	2.00E+09	0.5	1000
General ESD	180	1.00E+07	1.80E+09	0.5	900
General AOD	180	1.00E+07	1.80E+09	0.1	180
General TAG	180	1.00E+07	1.80E+09	0.001	2
Calibration (ID, LAr, MDT)					44 (8 long-term)
MC Raw			2.00E+08	2	400
ESD Sim			2.00E+08	0.5	50
AOD Sim			2.00E+08	0.1	10
TAG Sim			2.00E+08	0.001	0
Tuple				0.01	

Nominal year107 sAccelerator efficiency50%

Year 1 T0 requirements

Table Y1.1	CERN T0 : Storage requirement						
	Disk (TB)	Tape (TB)					
Raw	0	3040	→				
General ESD (prev)	0	1000	→		ESD is 24% of Tape		
Total	0	4040		ESD 0.5MB			
Table Y1.2	CERN T0 : C	omputing requi	rement				
	Reconstr.	Reprocess.	Calibr.	Cent.Analysis	User Analysis	Total (kSl2k)	
CPU (KSI2k)	3529	0	529	0	0	4058	

Note that the calibration load is evolving Aim here is for steady-state requirements (then vire resources for start-up)

Table Y1.3

Storage requirement

	otorage requirement				
	Disk (TB)	Auto.Tape (TB)	•		
Raw	46	0			
General ESD (curr.)	26	0	•		
General ESD (prev.)	0	18			
AOD (curr.)	257	0			
AOD (prev.)	0	4			
TAG (curr.)	3	0			
TAG (prev.)	0	2			
ESD Sim (curr.)	143	0			
ESD Sim (prev.)	0	100	•		
AOD Sim (curr.)	29	0			
AOD Sim (prev.)	0	20			
Tag Sim (curr.)	0.2	0			
Tag Sim (prev.)	0	0.2			
Calibration	57				
User Data (100 users)	173	0			
Total	733	144			

Small-sam	ple chaotic
reprocessi	ng 170kSl2k

- Calibration 530kSl2k
 - User analysis ~810kSl2k
- This site does not share in the global simulation load ESD is 23% of Disk ESD is 82% of Tape
 - The start-up balance would be very different, but we should try to respect the envelope

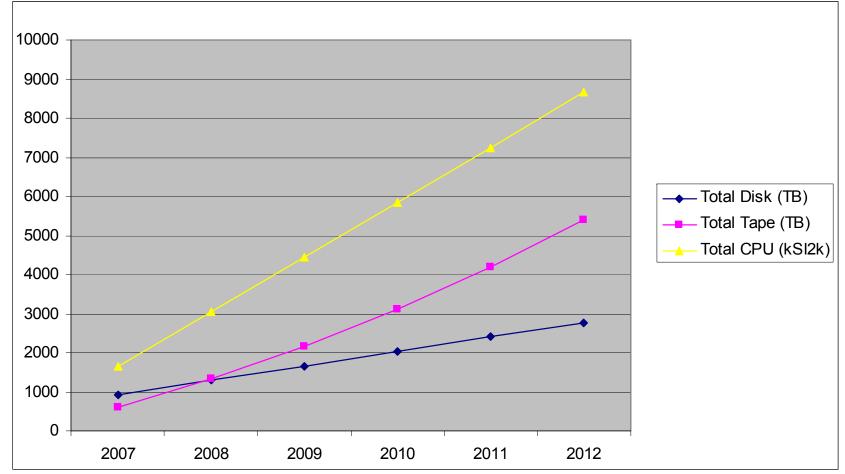
Year 1 T1 Requirements

Table Y1.5	T1 : Storage requirement			
	Disk (TB)	Auto.Tape (TB)		
Raw	46	320		
General ESD (curr.)	257	90		
General ESD (prev)	129	90		
AOD	283	36		
TAG	3	0		
Calib	57	0		
RAW Sim	0	40		
ESD Sim (curr.)	29	10		
ESD Sim (prev.)	14	10		
AOD Sim	31	4		
Tag Sim	0	0		
User Data (20 groups)	69	0		
Total	918	600		

Typical Tier-1 Year 1 resources

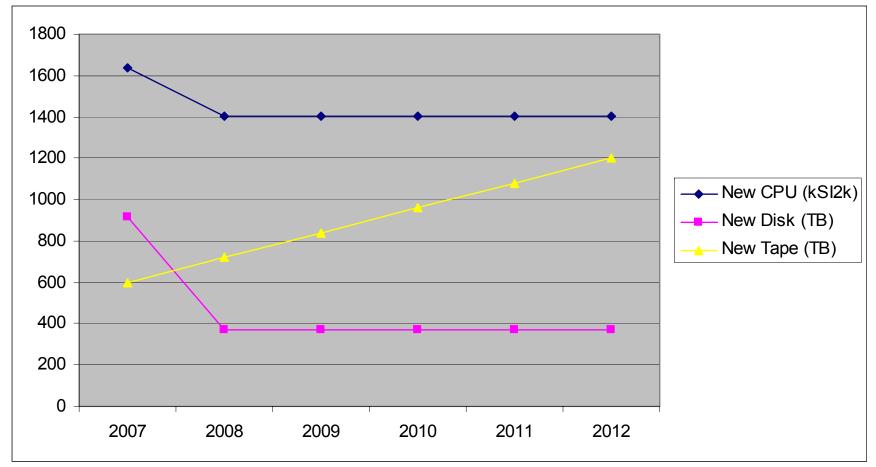
This includes a '1year, 1 pass' buffer

ESD is 47% of Disk ESD is 33% of Tape


Current pledges are ~55% of this requirement Making event sizes bigger makes things worse!

Estimate about 1660kSi2k for each of 10 T1s

Central analysis (by groups, not users) ~1200kSl2k



Single T1 Evolution (totals)

Single T1/year (per year)

Tier-2 (First year)

Table Y1.7	Typical Storage requirement			
	Disk (TB)	•		
Raw	1			
General ESD (curr.)	13			
AOD	64	•		
TAG	3			
RAW Sim	0	•		
ESD Sim (curr.)	3			
AOD Sim	7			
Tag Sim	0			
User Group	17			
User Data	26			
Total	134			

- Also includes user simulation
- T2s also share the event simulation load, but not the output data storage

Table Y1.8	Typical Computing requirement						
	Reconstruction.	Reprocessing	Simulation	User Analysis	Total (kSl2k)		
CPU (KSI2k)	0	0	22	121	143		

RWL Jones, Lancaster University

Overall Year-1 Resources

	CERN		All T1		All T2		Total	
Tape (Pb)	4.3	Pb	6.0	Pb	0.0	Pb	10.3	Pb
Disk (Pb)	0.7	Pb	9.2	Pb	5.4	Pb	15.3	Pb
CPU (MSI2k)	5.6	MSI2k	16.6	MSI2k	5.7	MSI2k	27.9	MSI2k

If T2 supports private analysis, add about 1 TB and 1 kSI2k/user

Issues

- Lively debate on streaming and exclusive streams
 - e.g. ESD/AOD meeting last Friday
- Model always had streaming of AOD etc
 - No problem with post T0 streaming of RAW/ESD or small strims
 - We need typical selections to determine the most efficient streams
- Level of access to RAW?
 - Depends on functionality of ESD
 - Discussion of small fraction of DRD augmented RAW data
- Much bigger concerns about non-exclusive streaming
 - How do you handle the overlaps when you spin over 2 streams?
 - Real use cases needed to calculate the most efficient access
- On the input side of the T0, assume following:
 - Primary stream every physics event
 - Publications should be based on this, uniform processing
 - Calibration stream calibration + copied selected physics triggers
 - Need to reduce latency of processing primary stream
 - Express stream copied high-pT events for 'excitement' and (with calibration stream) for detector optimisation
 - Must be a small percentage of total

Networking – T0-T1

- EF⇔T0 maximum 300MB/s (450MB/s with headroom)
- If EF away from pit, require 7GB/s for SFI inputs (10x10Gbps with headroom)
- Offline networking off-site now being calculated with David Foster
- Recent exercise with (almost) current numbers
- Full bandwidth estimated as requirement*1.5(headroom)*2(capacity)
- Propose dedicated networking test beyond DC2

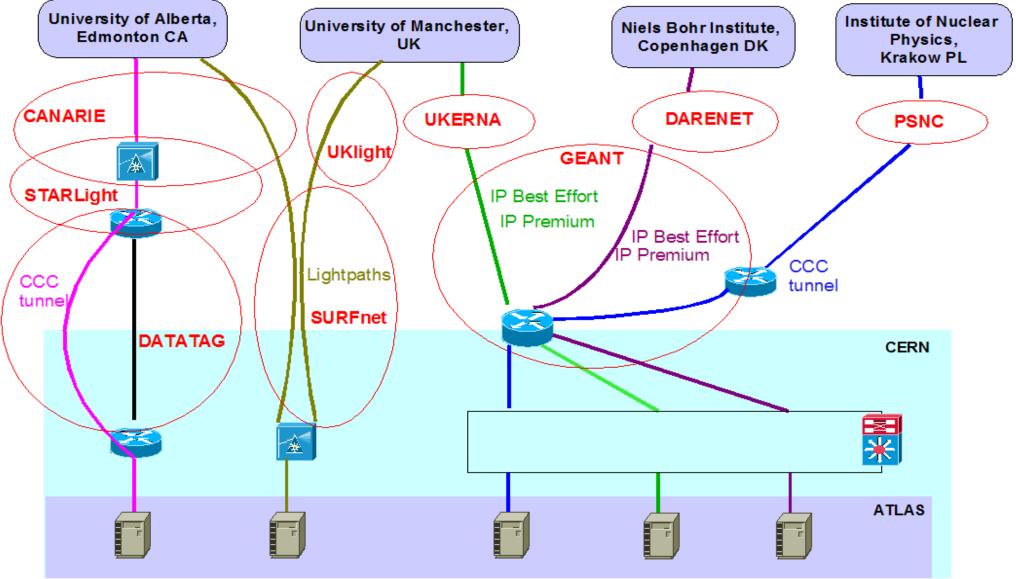
	RAL (typical T1?)	T0 Total
ATLAS (MB/s)	72	874
T1 Total ATLAS Gbps	1.7	14.4
T1 Gbps full	3.5	43
Assumed Gbps	10	70

RWL Jones, Lancaster University

Additional Bandwidth

- There will also be traffic direct from the online to the outside world
 - Monitoring low volume overall, but may be in bursts
 - Calibration generally low volume, but some MDT for example – may be large for short periods (~Gbps)
 - A possibility (for dedicated periods) is offline event filtering
 - Full rate would be ~10x10Gbps
 - More likely a reduced stream, several Gbps for short periods
 - **Big issues here, but should not be excluded a priori**

Organisation/Resources


The T0-T1 transfer tests are much delayed

- Now in Nov-Dec 04, so parallel with Service Challenge?
- Organisation of tools is also slow
- Oxanna Smirnova co-ordinating

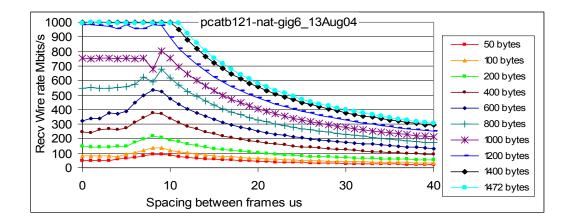
Need for higher-volume tests to

- Stress the network
- Stress the data management tool (Don Quixote)
- Willing participants/partners:
- Lancaster (with Richard Hughes-Jones, Manchester):
 - Through ESLEA, interest in dedicated light-paths
 - 2-year post to be released shortly, available early in new year
- CERN
 - Brian Martin and Catalin Meirosu
 - Continuing online tests
 - Need to be integrated with general effort

ATLAS remote farms – network connectivity

1 Gbit/s maximum bandwidth per connection

Bandwidth measurements


The networking is layered, from the physical transmission media (layer 1) to the application (layer 7)

- Tests at layer 2,3
 - relevant when the remote and the local sites are logically in the same LAN
 - example: throughput between CERN INP Krakow, August 2004:~1000 Mbit/s
- Layer 4 tests: TCP, UDP
 - Relevant for general-purpose, Internet-style connectivity
 - Performed tests between Geneva and Copenhagen, Edmonton, Krakow, Manchester
 - Test equipment: server PCs, running patched Linux kernels and open source software for network measurements

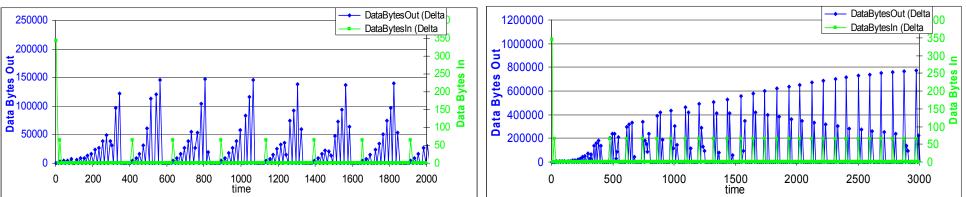
Example: Geneva – Manchester

•The network can sustain 1Gbps of UDP traffic, but the average server has problems with smaller packets

 Degradation for packets smaller than ~1000bytes, caused by the PC receiving the traffic

Simple request-response program

- Emulation of the request-response communication between the SFI and EFD in the Event Filter
- Runs over TCP/IP
- The client sends a small request message
- The server answers with an up to 2 MB message
- Results ... to be understood


Request – Response results, CERN – Uni. Manchester connection

Good response if the TCP stack is properly tuned, poor if not

- Need to understand TCP implementation issues, not only the generic protocol
- 800Mbit/s achievable with tuned stack, 120 Mbit/s without the same end nodes were used in both cases !

64 byte Request green1 MByte Response blue

Out-of-the-box TCP settings

Tuned TCP stack

Conclusions and Timetable

Computing Model documents required by end of year

- We will not now have completed the DC2 Tests by then, especially the analysis tests
- We can have serious input from detector calibrators and physics groups (sample sizes, access patterns)
- We also need to know (urgently) about off-site networking from online (calibration, monitoring, ...)
- Event access times
- Computing Model review in January 2005 (P McBride)
 - We need to have serious inputs at this point
- Documents to April RRBs
- MoU Signatures in Summer 2005
- Computing & LCG TDR June 2005