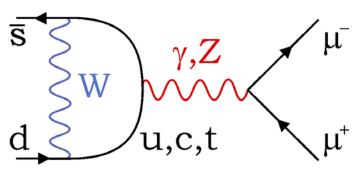
NA48/1: High sensitivity study of *K_s* and neutral hyperons: Status Report*

Augusto Ceccucci/CERN

Cambridge, CERN, Chicago, Dubna, Edinburgh,Northwestern, Ferrara, Florence, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Turin, Warsaw, Wien

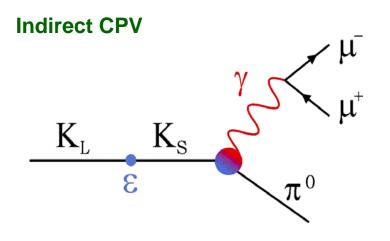
* Including some recent NA48 results

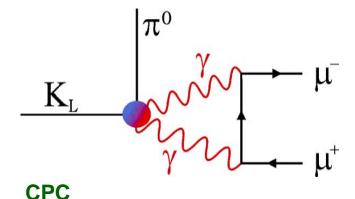
October 26, 2004


Introduction

- NA48/1 has collected data in 2000 and 2002
 - 2000: Phase I (no drift chambers)
 - 2002: Phase II
- The status report focuses on selected results that have appeared since October 2003
 - Rare Kaon Decays:
 - BR(K_S→π⁰ μ⁺μ⁻)
 - Implications
 - "Frequent" Kaon decays:
 - $BR(K_L \rightarrow \pi e \nu) \rightarrow |V_{us}|$
 - BR($K_L \rightarrow \pi^0 \pi^0 \pi^0$)
 - Hyperon decays:
 - $\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry
 - BR($\Xi^0 \rightarrow \Sigma^+ e^- \nu$) (Preliminary)
- Outlook:
 - NA48/1 Phase III?

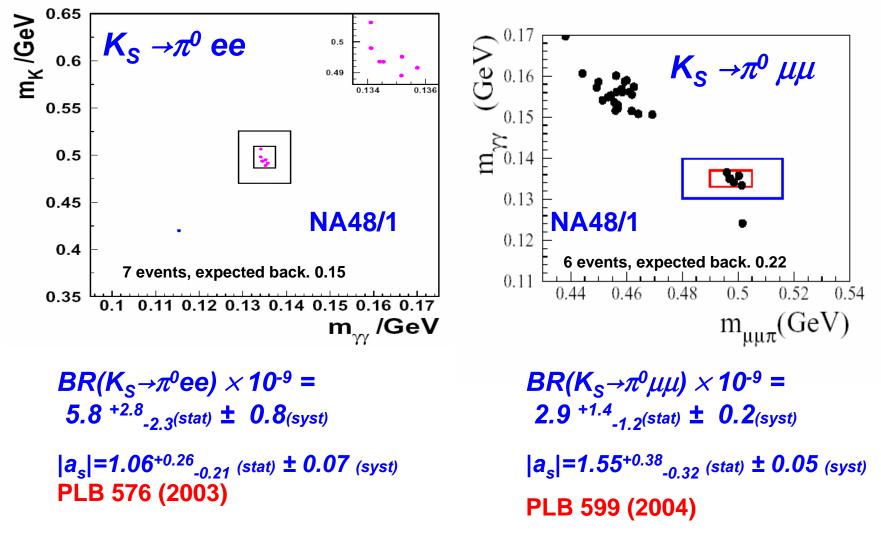
Rare Kaon Decays


 $K^0_L \rightarrow \pi^0 e^+ e^-$ and $K^0_I \rightarrow \pi^0 \mu^+ \mu^-$


Study Direct CP-Violation

Direct CPV

•NA48/1 has measured the Indirect CP-Violating Contribution for both modes
•S-L Constructive Interference preferred
•CP-Conserving Contributions are negligible



October 26, 2004

SPSC

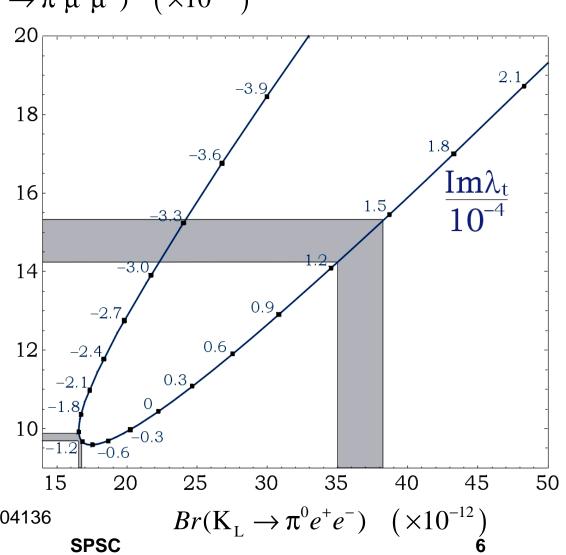
 $K_{S}^{0} \rightarrow \pi^{0} e^{+}e^{-} \text{ and } K_{S}^{0} \rightarrow \pi^{0} \mu^{+}\mu^{-}$

$K^{0}_{L} \rightarrow \pi^{0} ee (\mu \mu)$: SM Branching Ratios

Thank to the NA48/1 measurements, the KL BR can now be predicted

(Isidori, Unterdorfer, Smith) $Br(K_L \rightarrow \pi^0 \mu^+ \mu^-)$ (×10⁻¹²)

Constructive


$$B_{e^+e^-} = 3.7_{-0.9}^{+1.1} \times 10^{-11}$$
$$B_{\mu^+\mu^-} = 1.5_{-0.3}^{+0.3} \times 10^{-11}$$

now favored by two independent analyses*

Destructive

 $B_{e^+e^-} = 1.7^{+0.7}_{-0.6} \times 10^{-11}$ $B_{\mu^+\mu^-} = 1.0^{+0.2}_{-0.2} \times 10^{-11}$

*G. Buchalla, G. D'Ambrosio, G. Isidori,
Nucl.Phys.B672,387 (2003)
*S. Friot, D. Greynat, E. de Rafael, hep-ph/0404136
October 26, 2004

$K^{0}_{L} \rightarrow \pi^{0} ee (\mu \mu)$: Sensitivity to New Physics

Isidori, Unterdorfer, Smith:

 $Br(K_{\rm L} \rightarrow \pi^0 \mu^+ \mu^-) ~(\times 10^{-12})$

30

20

10

20

Enhanced EWP

Standard Model

80

Fleischer theory:

Ratios of B_d \rightarrow K\pi modes 50 **could be explained by enhanced electroweak penguins which, in turn,** 40 would enhance the K_L BR's:

$$B_{e^+e^-}^{NP} = 9.0_{-1.6}^{+1.6} \times 10^{-11}$$
$$B_{\mu^+\mu^-}^{NP} = 4.3_{-0.7}^{+0.7} \times 10^{-11}$$

•A. J. Buras, R. Fleischer, S. Recksiegel, F. Schwab, hep-ph/0402112, NP B697 (2004)

October 26, 2004

40

60

120

100

 $Br(\mathbf{K}_{\mathrm{I}} \rightarrow \pi^{0} e^{+} e^{-}) \quad (\times 10^{-12})$

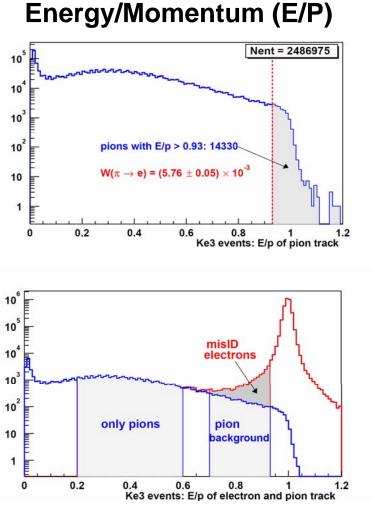
"Frequent" Kaon Decays

 $BR(K_{L} \rightarrow \pi e \nu) \rightarrow |Vus|$ $BR(K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0})$

October 26, 2004

The puzzle

- The Unitarity of the CKM matrix requires for the first row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- **PDG04:** $|V_{ud}| = 0.9738 \pm 0.0005 |V_{us}| = 0.2200 \pm 0.0026$ $|V_{ub}| = (3.67 \pm 0.47) \times 10^{-3}$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 3.3 \pm 1.5 \times 10^{-3}$ 2.2σ
- Semileptonic kaon decays are the best method to determine $|V_{us}|$:
 - protection from first order SU(3) symmetry breaking


NA48 $K_L \rightarrow \pi e v$ (Ke3) analysis

- Data from minimum bias run 1999 (80 M events)
- The basic measured quantity is the ratio R of decay rates of Ke3 decays relative to all decays with two charged tracks

$$R = \frac{N_{e} / a_{e}}{N_{2T} / a_{2T}}$$

 $B(2T) = 1 - B(3\pi^{\circ}) + B(\pi^{\circ}\pi^{\circ}\pi_{D}^{\circ}) - B(2\pi^{\circ}) - B(2\gamma) - B(4T)$ = 1.0048 - B(3\pi^{\circ}) **External input:** BR(K_{\boxed{L}} \rightarrow \pi^{\circ}\p

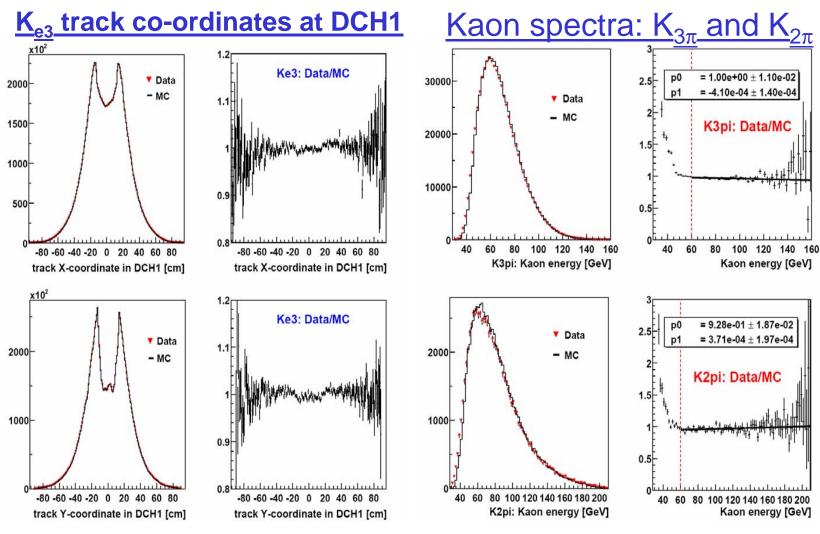
Electron Identification

- Background to Ke3
 - $K_{\mu3}/K_{3\pi}$ with pion misidentified as electron
 - Tag e requiring E/P>1
 - Prob(π→e)=5.8 × 10⁻³

- Inefficiency of
 electron identification
 - Estimated from K_{e3} data with identified pion
 - Prob(e→π)=4.9 × 10⁻³

October 26, 2004

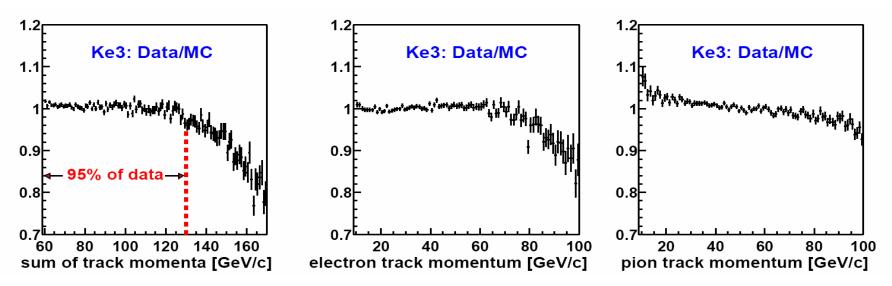
Acceptance


 MC simulation of detector acceptance for all 2-track channels. The most important channels are:

K _L →πev	0.2599
$K_{L} \rightarrow \pi \mu v$	0.2849
$\bar{\mathbf{K}}_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	0.0975

- Including radiative corrections
 - PHOTOS + Ginsberg
- Only ratios of BR enter In the calculation of the acceptance

 $\pi\pi\pi$ acceptance quite different from the semileptonic one, but BR is small A(2T) = 0.2412


DATA-MC Comparison

October 26, 2004

SPSC

Momentum Spectra

- Slight discrepancy data-MC for high track momenta
 - Only ~5% of statistics above 130 GeV/c
 - Uncertainty on R estimated by varying the accepted momentum range
 - → Relative uncertainty: 0.67% (largest exp. Systematics)

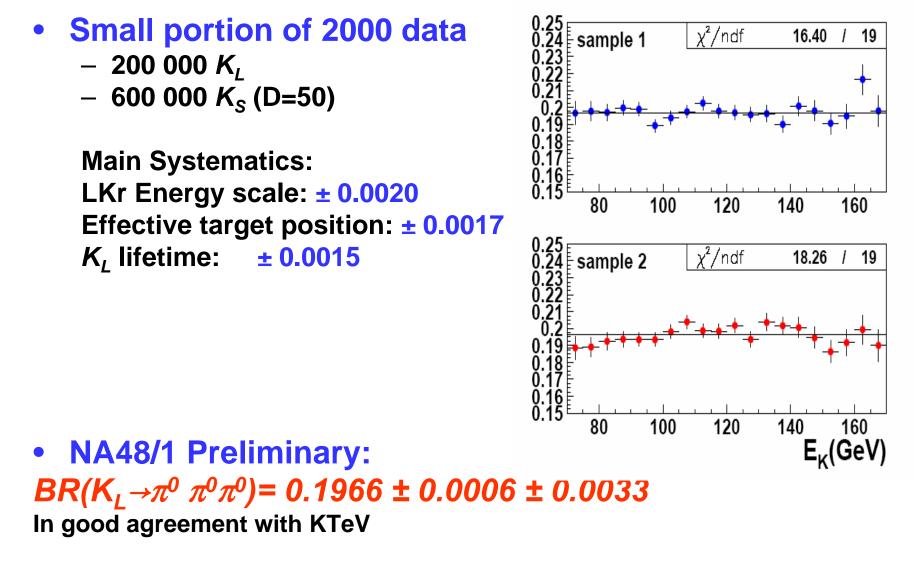
Experimental Result

$R = 0.4978 \pm 0.0035$

- To compute BR(K3e) we need : $BR(K_1 \rightarrow \pi^0 \pi^0 \pi^0)$
- PDG04: 0.2105 ± 0.0028
- \rightarrow 5 σ !! • KTeV 04: 0.1945 ± 0.0018 Take average*: 0.1992 ± 0.0070

 $BR(2T) = 0.8056 \pm 0.0070$

$BR(Ke3) = R * BR(2T) = 0.4010 \pm 0.028 \pm 0.0035$


*NA48/1 Internal cross check (Y2K data, see later) in good agreement with KTeV

October 26, 2004

Internal NA48 cross-check

- $BR(K_L \rightarrow \pi^0 \pi^0 \pi^0)$ is the main uncertainty
 - PDG and new KTeV measurement inconsistent (5 sigma)
- Standard way:
 - Relative measurement between neutral and charged decays, with usual difficulties...
- NA48/1 way:
 - The same number of K_s and K_L are produced at the target
 - One can measure $BR(K_1 \rightarrow \pi^0 \pi^0 \pi^0)$ with respect to the very well known $BR(K_s \rightarrow \pi^0 \pi^0)$ in the short neutral beam

Cross Check: $BR(K_L \rightarrow \pi^0 \pi^0 \pi^0)$

Extraction of
$$V_{us}$$

 $|V_{us}| \cdot f_{+}^{K^{0}\pi^{-}}(0) = \sqrt{\frac{128\pi^{3}}{G_{F}^{2}M_{K^{0}}^{5}S_{EW}I_{K^{0}}}} \cdot \Gamma(Ke3)$

Short distance factor $S_{EW} = 1.0232$ Phase Space Integral $I_{K0} = 0.10339 \pm 0.00063$

Correction for radiative events: 0.99423

$$|Vus| \cdot f_{+}(0) = 0.2146 \pm 0.0016$$

Clearly above old measurements and in agreement with new KTeV value

Extaction of V_{us}

- Taking the latest calculation:
 - (Cirigliano et al., 2004) $f_+(0)=0.981 \pm 0.010$ $|V_{us}| = 0.2187 \pm 0.0028$ still 2.4 from unitarity (0.2274)
- For comparison, if one takes the old Leutwyler and Ross value:

 $- f_{+}(0) = 0.961 \pm 0.008$

 $|V_{us}| = 0.2232 \pm 0.0029$

one finds good agreement with unitarity

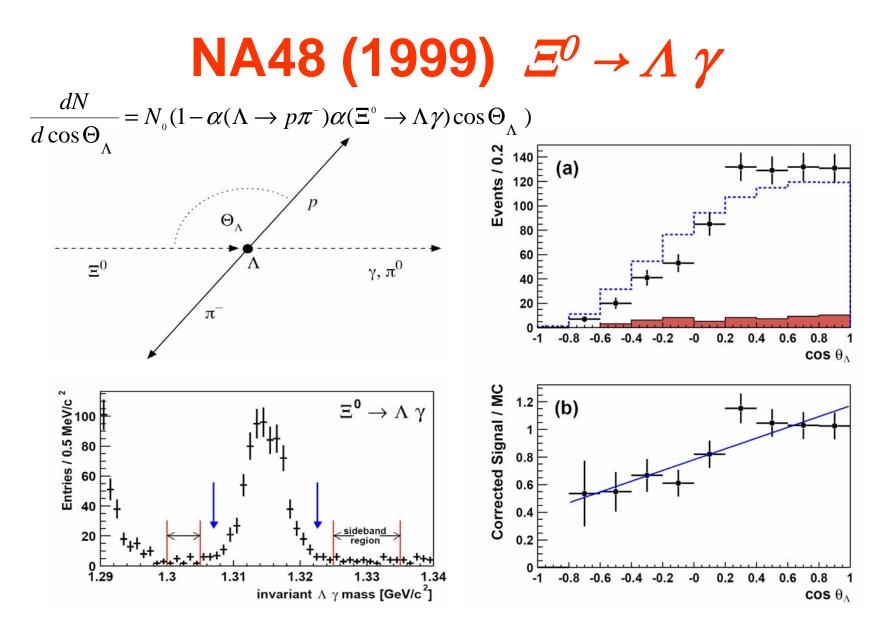
Neutral Hyperon Decays

 $\Xi^{0} \rightarrow \Lambda \gamma$ decay asymmetry (data 1999) BR($\Xi^{0} \rightarrow \Sigma^{+} e^{-} \nu$) (Preliminary) (data 2002)

Weak radiative hyperon decays:

a puzzle for the quark model

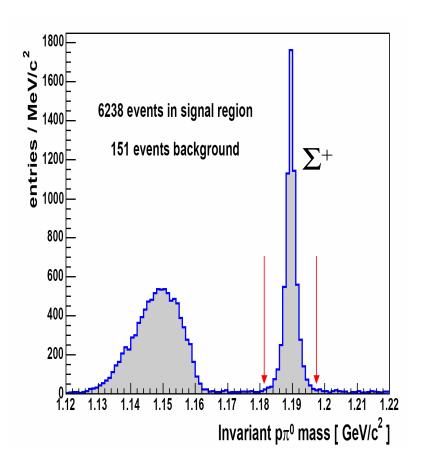
- Hara Theorem:
 - The Parity-violating amplitude of weak radiative hyperon decays vanishes in the SU(3) limit.
 - Accordingly, the decay asymmetry for weak radiative hyperon decays also vanishes.
- The violation of the Hara theorem is well established in

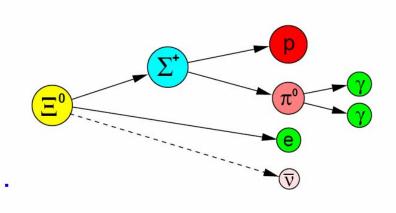

 $\Sigma^{+} \rightarrow p\gamma$ decays where a large negative asymmetry is observed: $\alpha(\Sigma^{+} \rightarrow p\gamma) = -0.76 \pm 0.08$

• The NA48 data (730 events collected in 1999) show the first evidence for negative decay asymmetry in $\Xi^0 \rightarrow \Lambda \gamma$:

 $\alpha(\underline{\Xi^0} \rightarrow \underline{\Lambda \gamma}) = -0.78 \pm 0.18 \pm 0.06$

• With the NA48/1 data collected in 2002 we will reduce the statistical error to a negligible level.

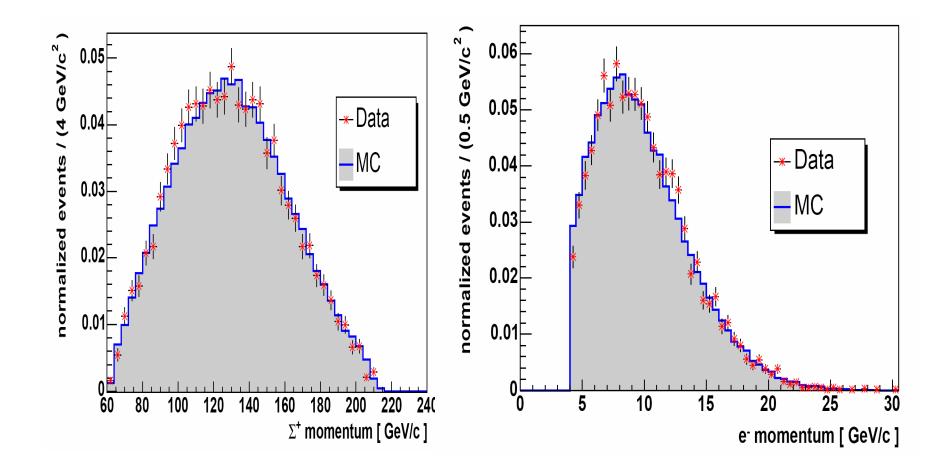

October 26, 2004



October 26, 2004

SPSC

Semileptonic Ξ^0 decays



 $Ξ^0$ semileptonic decay <u>is</u> <u>the only source</u> of Σ⁺ in the neutral beam because $Ξ^0→Σ^+ π^-$ is kinematically forbidden

October 26, 2004

DATA-MC Comparison

Experimental Challange

- Proton line-of flight very close to beampipe
 - Low acceptance
 - Sensitivity to detector geometry
- Hyperon trigger very tight to exclude online $K_S \rightarrow \pi^+ \pi^-$, $\Lambda \rightarrow p\pi^-$ and radiative decays
 - Trigger computation based on minimum bias sample
 - Trigger efficiency: (83.8 ± 2.2) %

Preliminary Result

• Based on 6238 $\Xi^{0} \beta$ -decays: BR $(\Xi^{0} \rightarrow \Sigma^{+} e^{-} \nu)=(2.51 \pm 0.03_{sta} \pm 0.11_{sys})\times 10^{-4}$ Compare KTeV: (2.71 ± 0.38) ×10⁻⁴ Systematics:

Trigger Efficiency	2.6 %
Acceptance	3.0 %
Ξ^0 ff (g ₁ and f ₂)	1.0 %
Ξ^0 Polarisation	1.0 %
Ξ^{0} Lifetime	0.5 %
Tot systematics	4.2 %
Stat Uncertainty	1.2 %

NA48/1 Publications

- PRECISE MEASUREMENTS OF THE K(S) ---> GAMMA GAMMA AND K(L) ---> GAMMA GAMMA DECAY RATES. A. Lai et al., CERN-EP-2002-074, Oct 2002. 10pp. Published in Phys.Lett.B551:7-15,2003 e-Print Archive: hep-ex/0210053
- 2. FIRST OBSERVATION OF THE K(S) ---> PIO GAMMA GAMMA DECAY. A. Lai *et al.*, CERN-EP-2003-052, Aug 2003. 10pp. Published in Phys.Lett.B578:276-284,2004 e-Print Archive: hep-ex/0309022
- 3. OBSERVATION OF THE RARE DECAY K(S) ---> PI0 E+ E-. J.R. Batley *et al.*, CERN-EP-2003-062, Sep 2003. 13pp. Published in Phys.Lett.B576:43-54,2003 e-Print Archive: hep-ex/0309075
- 4. OBSERVATION OF THE RARE DECAY K(S) ---> PI0 MU+ MU-. J.R. Batley *et al.*, CERN-PH-EP-2004-025, Jun 2004. 19pp. Published in Phys.Lett.B599:197-211,2004 e-Print Archive: hep-ex/0409011
- 5. SEARCH FOR CP VIOLATION IN K0 ---> 3 PIO DECAYS. A. Lai *et al.*, Aug 2004. 18pp. Submitted to Phys.Lett.B e-Print Archive: hep-ex/0408053

2004 NA48 Publications

- 1. MEASUREMENT OF THE XI0 ---> LAMBDA GAMMA DECAY ASYMMETRY AND BRANCHING FRACTION. A. Lai *et al.*, CERN-EP-2003-078, Jan 2004. 15pp. Published in Phys.Lett.B584:251-259,2004 e-Print Archive: hep-ex/0401027
- 2. MEASUREMENT OF THE BRANCHING RATIO AND FORM-FACTORS FOR THE DECAY K(L) ---> PI+- PI0 E-+ NU(E)(ANTI-NU(E)). J.R. Batley et al., CERN-PH-EP-2004-013, Apr 2004. 12pp. Published in Phys.Lett.B595:75-85,2004 e-Print Archive: hep-ex/0405010
- 3. MEASUREMENT OF THE BRANCHING RATIO OF THE DECAY K(L) ---> PI+- E-+ NU AND EXTRACTION OF THE CKM PARAMETER |V(US)|. Lai *et al.*, CERN-PH-EP-2004-047, Sep 2004. 18pp. In

Press Phys. Lett. B 21408

Outlook

• Some NA48/1 analyses under way:

- $K_{\rm S} \to \pi^+ \pi^- \pi^0$
- $K_s \rightarrow \pi e v$
- Ξ^{0} lifetime
- $\quad \Xi^0 \to \Lambda \ \mathbf{e^+} \ \mathbf{e^-}$
- $\quad \Xi^0 \to \Sigma^{\!\!\!+} \ e \ v \ form \ factors \to |V_{us}|$
- Is there scope for NA48/1 Phase III?
 - K_s decays
 - Renewed interest following NA48/1 measurements
 - The predictions of the $K_L \rightarrow \pi^0$ ee ($\mu\mu$) BR would improve if K_S mode would be better known
 - To improve KS statistics by a factor of 10 one would need to run for ~180 days at three times the NA48/1 Phase II intensity
 - Ξ^0 semi-leptonic decays:
 - Improvements in trigger and optimisation of detector for neutral hyperon decays might lead to definitive measurements of form factors and BR
 - No reason to collect more radiative decays