1st International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions (Hard Probes 2004) Ericeira, Portugal, November 4 – 10, 2004

Rescattering effects in p-nucleus and heavy-ion collisions

Jianwei Qiu *Iowa State University*

based work done with X. Guo, Ma Luo, G. Stermen, I. Vitev, X. Zhang, et al.

November 7, 2004 1 Jianwei Qiu, ISU

Outline of the Talk

- **Our approach to QCD rescattering**
- **Characteristic scale of QCD rescattering:** $\langle F^{+\alpha}F_{\alpha}^{+\alpha} \rangle$ \Box Extract $\left\langle F^{+\alpha}F_{\alpha}^{+}\right\rangle$ from DIS nuclear shadowing data **Extract** $\langle F^{+\alpha}F_{\alpha}^{\ \ +}\rangle$ from Drell-Yan k_T-broadening
- **Universality of the characteristic scale**
- **Low mass Drell-Yan and power corrections**

Summary and outlook

Our approach to the rescattering

- \Box **Baier et al (BDMPS) treat energy lose due to many soft rescatterings Not hard scale is required**
- \sqcup **We (Guo, et al) calculate coherent multiple scatterings in terms of perturbative QCD factorization A hard scale is required**
- \Box **A complete analysis of hard probe in a large target involves both energy lose and hard momentum transfere.g., Guo and Wang (PRL 85, 2000)**

Our approach to the rescattering

Advantage:

- **factorization approach enables us to quantify the high order corrections**
- **express non-perturbative quantities in terms of matrix elements of well-defined operators – universality**
- **better predictive power**

Disadvantage:

- **☆ Rely on the factorization theorem not easy to prove**
- **Hard probe might limit the region of coherence – small target**

Helper:

Hard probe at small x could cover a large nuclear target

November 7, 2004 1991 1992 1993 1994 1994 1994 1995 1994 1994 1995 1996 1997 1998 1999 1999 1999 1999 1999 199

Size of the hard probes

 Size of a hard probe is very localized and much smaller than a typical hadron at rest

 $1/Q \ll 2R \sim \text{fm}$

But, it might be larger than a Lorentz contracted hadron:

 $1/Q > 2R(m/p)$

 low x: uncertainty in locating the parton is much larger than the size of the boosted hadron (a nucleon)

$$
\frac{1}{Q} \sim \frac{1}{xp} \gg 2R \frac{m}{p} \quad \Rightarrow \quad x \ll x_c \equiv \frac{1}{2mR} \approx 0.1
$$

If the active *x* **is small enough a hard probe could cover several nucleons In a Lorentz contracted large nucleus!**

Dynamical power corrections

Coherent multiple scattering leads to dynamical power corrections:

$$
\frac{d\,\sigma^{(D)}}{d\,\sigma^{(S)}} \sim \alpha_s \frac{1/Q^2}{R^2} \left\langle F^{+\alpha} F^+_{\alpha} \right\rangle A^{1/3}
$$

$$
d\,\sigma \approx d\,\sigma^{(S)} + d\,\sigma^{(D)} + \dots
$$

Characteristic scale for the power corrections: $\langle F^{+\alpha} F_{\alpha}^+ \rangle$

For a hard probe:

$$
\frac{\alpha_s}{Q^2R^2} \ll 1
$$

 To extract the universal matrix element, we need new observables more sensitive to

 $F^{+\alpha}F_\alpha^{+\alpha}$

Drell-Yan *QT* **broadening**

Guo, PRD 58 (1998)

.
^{QQQQQQQQ}QQ

Q Drell-Yan Q_T average:
$$
\langle Q_T^2 \rangle = \int dQ_T^2 (Q_T^2) \left(\frac{d\sigma}{dQ^2 dQ_T^2} \right) / \int dQ_T^2 \left(\frac{d\sigma}{dQ^2 dQ_T^2} \right)
$$

 \Box Drell-Yan Q_T broadening: $\Delta \left\langle Q_T^2 \right\rangle = {\left\langle Q_T^2 \right\rangle}^{hA} - A{\left\langle Q_T^2 \right\rangle}^{hN} \propto \sigma^{(D)}$

Four-parton correlation:

$$
T_q(x, A) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \int dy_1^- dy_2^- \theta (y^- - y_1^-) \theta (-y_2^-)
$$

$$
\times \langle p_A | F_\alpha^+ (y_2^-) \overline{\psi (0)} \frac{y^+}{2} \psi (y^-) F^{+\alpha} (y_1^-) | p_A \rangle \approx \frac{9A^{1/3}}{16\pi R^2} \langle F^{+\alpha} F_\alpha^+ \rangle q_A (x)
$$

Agental Control
Agentarion

Characteristic scale:

$$
\left\langle F^{+\alpha} F_{\alpha}^{+}\right\rangle \equiv \frac{1}{p^{+}}\int d y_{1}^{-} \left\langle N \left| F^{+\alpha} \left(0\right) F_{\alpha}^{+} \left(y_{1}^{-}\right) \right| N \right\rangle \theta \left(y_{1}^{-}\right)
$$

November 7, 2004 7 Jianwei Qiu, ISU

$F^{\ast \alpha} F_\alpha^\ast \rangle$ from Drell-Yan Q_T broadening

Drell-Yan QT broadening:

$$
\Delta \left\langle Q_T^2 \right\rangle {\equiv} \left\langle Q_T^2 \right\rangle^{hA} - A \left\langle Q_T^2 \right\rangle^{hN} = \left(\frac{3\pi\alpha_s}{4R^2}\right) \left\langle F^{+\alpha} F_\alpha^+ \right\rangle A^{1/3}
$$

E772 and NA10 data:

$$
\left\langle F^{+\alpha}F_{\alpha}^+\right\rangle \sim 3-4 \qquad \text{Guo, PRD 58 (1998)}
$$

In cold nuclear matter

 \Box Di-jet momentum imbalance in $\ \gamma+A\,$ collisions

Need more independent measurements to test the universality!

Inclusive deep inelastic scattering

 \square **Nuclear shadowing data are available for** $x_B < 0.1$

Interpretation:

Parton recombination and saturation, color glass condensate to parton density in a larger nucleus

Leading twist shadowing

But, experiments measure cross sections, not parton distributions:

At small x, the hard probe covers several nucleons, coherent multiple scattering could be equally important at relatively low Q

Coherent multiple scattering in DIS

Collinear factorization to DIS cross section:

 $\hat{a}^{*h}_{lS} = \ d \hat{\sigma}^{i}_{2} \ \ \otimes [1 + C^{(1,2)} \alpha_{_S} + C^{(2,2)} \alpha_{_S}^2 + ...] \otimes T^{i/2}_{2}$ $(1, 4)$ $(2, 4)$ $(2, 4)$ $d\sigma_{\rm DIS}^{\gamma*h} =\ d\hat{\sigma}_2^i\ \otimes [1\!+\!C^{(1,2)}\alpha_{_S}+C^{(2,2)}\alpha_{_S}^2+...]\!\otimes\! T_2^{i/h}(x)$ 2 4 \odot [1, $\bigcap^{(1,4)}$ α $\bigcap^{(2,4)}$ α^2 $\bigcap^{(1,4)}$ \odot $T^{i/2}$ 4 $6 \otimes 11 \cdot C^{(1,6)} \approx C^{(2,6)} \cdot 2 \cdot 1 \otimes T^{i/2}$ 6 $(1, 6)$ (2,6) α ² 4 ˆ $\left(1+\frac{x-4}{2} \otimes [1+C^{(1,4)}\alpha_{s}+C^{(2,4)}\alpha_{s}^{2}+...] \otimes T_{4}^{1/n}(x)\right)$ ˆ σ () + $\frac{d^{10} \mathcal{L}^{(1,0)}(x)}{d^{11} \Omega} \otimes [1 + C^{(1,0)} \alpha_s + C^{(2,0)} \alpha_s^2 + ...] \otimes T_6^{1/n}(x)$.. .*i f* Ω **1** *f n f <i>f <i>f <i>f i s i s h s s* $C^{(1,4)}\alpha_{\scriptscriptstyle c}$ + C *d* $\frac{1}{2} \mathcal{Q}^2 \otimes [1 + C^{(1,4)} \alpha_s + C^{(2,4)} \alpha_s^2 + ...] \otimes T_A$ *d* $\frac{C_0C_0}{Q^4}$ \otimes $[1 + C^{(1,0)}\alpha_s + C^{(2,0)}\alpha_s^2 + ...]$ \otimes T_c *C x* $C^{(2,0)}\alpha^2 + ... \otimes T^{Un}_c(x)$ $\frac{\sigma_4}{2} \otimes [1 + C^{(1,4)}\alpha] + C^{(2,4)}\alpha$ $\frac{\sigma}{\sigma} \otimes [1 + C^{(1,6)}\alpha] + C^{(2,6)}\alpha$ $+ \frac{36}{2} \otimes [1 + C^{(1,4)}\alpha_{s} + C^{(2,4)}\alpha_{s}^{2} + ...] \otimes$ $+$ $\frac{a^{3}b^{6}}{4} \otimes [1 + C^{(1,0)}\alpha] + C^{(2,0)}\alpha' + ... \otimes$ +**Power corrections** $T_{4,\ldots}^{i/h}(x)$ should include both $\langle k_T^2 \rangle$ and **Factorization breaks in hadronic collisions beyond 1/Q2 terms**

 Nonperturbative contributions:

multiple scattering effect $\langle F^{+a}F \rangle$ α α $+\alpha$ \mathbf{r} +

Resummation of leading power corrections:

$$
\sum_N\!\left(\frac{\alpha_{_S}}{\mathcal{Q}^2R^2}\Big\langle F^{+\alpha}F_{\alpha}^{~~+}\Big\rangle A^{1/3}\right)^{\!\!N}
$$

November 7, 2004 10 Jianwei Qiu, ISU

Leading twist

Resummation of multiple scattering

Contributions to DIS structure functions

Transverse structure function:

Qiu and Vitev, PRL (in press)

 $\mathbf X$

$$
F_T(x_B, Q^2) = \sum_{n=0}^{N} \frac{1}{n!} \left[\frac{\xi^2}{Q^2} (A^{1/3} - 1) \right]^n x_B^n \frac{d^n}{dx_B^n} F_T^{(0)}(x_B, Q^2)
$$

\n
$$
\approx F_T^{(0)}(x_B(1 + \Delta), Q^2)
$$

\n**Similar expression of F_L**
\n
$$
\Delta = \frac{\xi^2}{Q^2} (A^{1/3} - 1)
$$

\n
$$
\xi^2 = \frac{3\pi\alpha_s}{8R^2} \langle F^{+\alpha}F_{\alpha}^+ \rangle
$$

\n**Single parameter for the power correction, and is proportional to the same characteristic scale**
\n
$$
\sum_{n=0}^{N} \sum_{n=0}^{N} \frac{1}{n!} \left[\frac{\xi^2}{\sum_{n=0}^{N} (A^{1/3} - 1)} \right]
$$

November 7, 2004 12 Jianwei Qiu, ISU

 0.001

Leading twist shadowing

Power corrections complement to the leading twist shadowing:

- **Leading twist shadowing changes the x- and Q-dependence of the parton distributions**
- **Power corrections to the DIS structure functions (or cross sections) are effectively equivalent to a shift in x**
- **Power corrections vanish quickly as hard scale Q increases while the leading twist shadowing goes away much slower**

 If leading twist shadowing is so strong that x-dependence of parton distributions saturates for $x < x_c$, **additional power corrections, the shift in x, should have no effect to the cross section! ^x**

November 7, 2004 13 Jianwei Qiu, ISU

November 7, 2004 14 Jianwei Qiu, ISU

Upper limit of $\langle F^{+\alpha}F^{+}_{\alpha} \rangle$ **from DIS data**

□ Drell-Yan Q_T-broadening data:

$$
\Longrightarrow \left\langle F^{+a} F_{a}^{+} \right\rangle_{\text{DY}} \sim 3-4 \implies \xi^2 \approx 0.05-0.06 \text{ GeV}^{-2}
$$

Upper limit from the shadowing data:

$$
\implies \xi_{Max}^2 \approx 0.09 - 0.12 \text{ GeV}^2 \implies \left\langle F^{+\alpha} F_{\alpha}^+ \right\rangle_{DIS} < 6
$$

"Saturation" scale of cold nuclear matter:

 $Q_s^2 \sim \xi^2 A^{1/3} \leq 0.3 \text{ GeV}^2$ seen by quarks \leq 0.6 GeV² seen by gluons ∼

Physical meaning of these numbers:

$$
\left\langle F^{+\alpha} F_{\alpha}^+ \right\rangle = \frac{1}{p^+} \int dy_1^- \left\langle N \middle| F^{+\alpha} \left(0 \right) F_{\alpha}^+ \left(y_1^- \right) \middle| N \right\rangle \theta \left(y_1^- \right) \approx \frac{1}{2} \lim_{x \to 0} xG(x, Q^2)
$$

\n
$$
\implies \left\langle xG(x \to 0, Q_s^2) \right\rangle \le 8 \text{ in cold nuclear matter?}
$$

November 7, 2004 15 Jianwei Qiu, ISU

Negative gluon distribution at low Q

ZEUS

 NLO global fitting $Q^2 = 1$ GeV² 6 2.5 GeV 2 **based on leading twist** ZEUS NLO QCD fit 4 xg **DGLAP evolution** $\mathbf{x}\mathbf{S}$ $\mathbf{2}$ **leads to negative** xS 0 **gluon distribution** хg -2 7 GeV^2 20 GeV^2 20 **MRST PDF's** tot. error tot. error $(\alpha_{\rm s}$ free) $(\alpha$ fixed) **have the same**uncorr. error A $(\alpha_{\rm s}$ fixed) 10 **features**хg хg xS xS \bf{o} **Does it mean that we** $200~{\rm GeV}^2$ 2000 GeV 2 **have no gluon for** 30 **x < 10-3 at 1 GeV?** 20 xg xg 10 **No!**xS xS \bf{o} 10^{-3} 10^{-2} 10^{-1} $1 10^{-4}$ 10^{-3} 10^{-2} 10^{-1} 10^{-4} 1 x

November 7, 2004 16 Jianwei Qiu, ISU

Recombination prevents negative gluon

- **In order to fit new HERA data, like MRST PDF's, CTEQ6 gluon has to be much smaller than CTEQ5, even negative at Q = 1 GeV**
- \blacksquare The power correction **to the evolution equation slows down the Q2 dependence, prevents PDF's to be negative**

$$
\left\langle xG(x\rightarrow 10^{-5})\right\rangle \sim 3
$$

Eskola et al. NPB660 (2003)

November 7, 2004 17 Jianwei Qiu, ISU

Factorization in hadron-hadron collisions

Soft-gluon interactions take place all the time:

Factorization = Soft-gluon interactions are powerly suppressed

Factorization breaks beyond 1/Q2 term:

$$
\sigma(Q) = H^0 \otimes f_2 \otimes f_2 + \left(\frac{1}{Q^2}\right) H^1 \otimes f_2 \otimes f_4 + O\left(\frac{1}{Q^4}\right)
$$
 Doria, et al (1980)
Basu et al. (1984)
Brandt, et al (1989)

November 7, 2004 18 Jianwei Qiu, ISU

Doria, et al (1980)

Role of $\langle F^{+ \alpha} F_{\alpha}^+ \rangle$ in p-nucleus collisions

 \Box A-enhanced power corrections, $A^{1/3}/Q^2$, are factorizable:

□ But, power corrections are process-dependent, and they are different from DIS

Drell-Yan at low mass

Enhancement of low mass dileptons in heavy ion collisions:

November 7, 2004 20 Jianwei Qiu, ISU

Predicted power corrections to DY

November 7, 2004 21 Jianwei Qiu, ISU

Intuition for the power corrections

DIS with a space-like hard scale:

LO

Resum all powers

Power Corrections in p+A Collisions

- **Hadronic factorization fails for power corrections of the order of 1/Q4 and beyond**
- **Medium size enhanced dynamical power corrections in p+A could be factorized**

to make predictions for p+A collisions

Single hadron inclusive production:

Once we fix the incoming parton momentum from the beam and outgoing fragmentation parton, we uniquely fix the momentum exchange, q^{μ} , and the probe size

 \Leftrightarrow coherence along the direction of q^{μ} *-* p^{μ}

November 7, 2004 23

November 7, 2004 ²⁴ Jianwei Qiu, ISU **Acoplanarity and power corrections** 0 π $K^{\scriptscriptstyle +}$ $I_2(\Delta \phi) = \frac{1}{N} \frac{dN^{n_1 n_2} d^{ijet} (y_1 - y_2)}{M}$ $\left(\left| y_1 - y_2 \right| \right)$ $_{\alpha^{-\Delta \phi^2 / 2\sigma^2_{Near}}}$ A_{Far} $_{\alpha^{-(\Delta \phi - \pi)^2 / 2\sigma^2}}$ $\Delta(\Delta\phi) = \frac{1}{\sqrt{1-\frac{1}{n}}}\frac{dN^{h_1h_2}dijet}{{\rm div}(h_1-h_2)}\Big|_{h_1}$ $2\pi\sigma_{\text{Near}}$ $\sqrt{2}$ *Near* **Far** \sim $-\left(\Delta\varphi - \pi\right)$ / 2σ Far *F ar Near* $\sqrt{21}$ $\frac{J_2}{\sqrt{2}}$ $\frac{J_4}{\sqrt{2}}$ $\frac{J_5}{\sqrt{2}}$ $\frac{J_6}{\sqrt{2}}$ $\frac{J_7}{\sqrt{2}}$ $\frac{J_8}{\sqrt{2}}$ $\frac{J_8}{\sqrt{2}}$ *trig Nea d r r* $C_2(\Delta \phi) = \frac{1}{N_{trig}} \frac{dN^{n_in_2}$ diget $\left(y_1 - y\right)^2$ $A_{\text{Near}}(|y_1 - y_2|)$ *e* $e^{-\Delta\phi^2/2\sigma^2_{\text{Near}}} + \frac{A_{\text{Far}}}{\sqrt{a^2-\sigma^2_{\text{har}}}}e^{-(\Delta\phi-\pi)^2/2\sigma^2_{\text{har}}}.$ $\pi\sigma_{\text{Max}}$ $\sqrt{2\pi\sigma}$ $\approx \frac{A_{Near}\sqrt{\gamma_1-\gamma_2}}{\sqrt{2}}e^{-\Delta\phi^2/2\sigma^2_{Near}}+\frac{A_{Far}}{\sqrt{2}}e^{-(\Delta\phi-\frac{1}{2})}$ Δ 2) $\int e^{\mu^2}$, $s = 2\xi \frac{P}{\lambda_{q,g}}$ *I ^T q* $k_T^{\ 2}\bigg\rangle_{\!B} = 2\xi \frac{\mu}{\lambda} \langle L$ 2 $2 \setminus q,$ 2 0 $3C_p\pi\alpha^2 \quad 1$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{d\theta}{dy}$ $\frac{1}{\tau_0}$ Hot 1+1D $2\xi \sim \langle L \rangle$ Cold 2 \rm{Col} Hot *q g* T / F_S $2C \pi \alpha^2$ 1 dN_S $R^{\prime\prime\prime\prime\prime}$ _s *FS L* $k_f^2\rangle_{FS}^2 = \begin{cases} 4.6 & \text{if } k_f^2 \leq 1 \end{cases}$ *A dy* $\zeta \frac{\mu}{\lambda_{a}}$ $\xi \frac{3C_R \pi \alpha}{2}$ α τ $\begin{bmatrix} \end{bmatrix}$ $=\n\begin{cases}\n\end{cases}$ **Consider di-hadron correlations associated with hard (approximately) back-to-back scattering** $A_{Far} (p + A) = R^{h_1 h_2} (p_{\overline{I}}) < 1$ 2) \int_1^2 2) \int_2^2 2) \int_2^b 2) \int_2^b *pair* $\sqrt{-1} \text{vac}$ $\frac{1}{i} \sqrt{-1} \text{ i}$ $\left\langle k_{\perp}^{-2}\right\rangle_{\rm min} \;=\; \left\langle k_{\perp}^{-2}\right\rangle_{\rm max} \;+\sum \Bigl\langle k_{\perp} \Bigr|$ **Coherent scattering reduces: Incoherent scattering broadens:**

Dihadron Correlation Broadening and Attenuation

Mid-rapidity and moderate p_{τ}

- **Only small broadening versus centrality**
- **Looks rather similar at forward rapidity of 2**
- **The reduction of the area is rather modest**

Forward rapidity and small p_T

- **Apparently broader distribution** $\Delta \phi$
- **Even at midrapidity a small reduction of the area**
- **Factor of 2-3 reduction of the area at forward rapidity of 4**

Trigger bias can also affect:

$$
A_{\text{Far}} \sim (-t) \sim 1/z_1
$$

Summary and outlook

- **Introduce a systematic factorization approach to coherent QCD rescattering in nuclear medium.**
- **Leading medium size enhanced nuclear effects due to power corrections can be systematically calculated, and they complement to the leading twist (universal) nuclear effects**
- **Identify a characteristic scale for the QCD rescattering: which corresponds to a mass scale 0.6 GeV2 (seen by gluons) in cold nuclear matter** $F^{+\alpha}F^{+}_{\alpha}$
- **The characteristic scale depends on the medium and could have temperature dependence**

Many applications:

power (or non-linear) corrections to fragmentation functions jet broadening and suppression of jet correlation in p-A

> **Qiu and Vitev, PLB587 (2004) hep-ph/0405068**

Guo and Wang, PRL85 (2000)

…

Backup transparencies

The Gross-Llewellyn Smith Sum Rules

$$
S_{\text{GLS}} = \int_{0}^{1} dx \frac{1}{2x} \left(x F_{3}^{vN} (x, Q^{2}) + x F_{3}^{\overline{v}N} (x, Q^{2}) \right)
$$

$$
\approx \# U + \# D = 3
$$

D.J.Gross and C.H Llewellyn Smith , Nucl.Phys. B 14 (1969)

$$
\Delta_{\text{GLS}} = \frac{1}{3} (3 - S_{\text{GLS}}) = \frac{\alpha_s(Q)}{\pi} + \frac{\kappa}{Q^2} + O\left(\frac{1}{Q^4}\right)
$$

Fully coherent final-state power corrections to the sum rule almost cancel due to the unitarity:

$$
\int_{-\infty}^{+\infty} dx \varphi(x + \Delta x) = \int_{-\infty}^{+\infty} dx \varphi(x)
$$

only for a limited values of $\;x\,{\in}\,\big(0,0.1\big)$ But, nuclear enhanced power corrections

Qiu and Vitev, Phys.Lett.B 587 (2004)

Prediction is compatible with the trend in the current data

Process-dependent power corrections are important!

Numerical results for the power corrections

- **Similar power correction modification to single and double inclusive hadron production**
- ¾ **increases with rapidity**
- ¾ **increases with centrality**
- \triangleright disappears at high $p_{\text{\tiny T}}$ in accord with **the QCD factorization theorems**
- ¾ **single and double inclusive shift in** $\sim \xi^2 / t$

$$
s = 2 \frac{p_T^2}{z^2} (1 + \cosh(y_1 - y_2)),
$$

\n
$$
t = -\frac{p_T^2}{z^2} (1 + \exp(-y_1 + y_2)),
$$

\n
$$
u = -\frac{p_T^2}{z^2} (1 + \exp(y_1 - y_2))
$$

Small at mid-rapidity C.M. energy 200 GeV Even smaller at mid-rapidity C.M. energy 62 GeV

November 7, 2004 29 Jianwei Qiu, ISU