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■ High–energy (“small–x") evolution in QCD is a classical
stochastic process

◆ Color Dipole Picture (Master equation)

◆ CGC (Fokker–Planck equation: ‘JIMWLK’)
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Outline (1)

■ High–energy (“small–x") evolution in QCD is a classical
stochastic process

◆ Color Dipole Picture (Master equation)

◆ CGC (Fokker–Planck equation: ‘JIMWLK’)

“Classical": Large separation in rapidity/time scales

=⇒ Effective theory in three (or two) spatial dimensions
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Outline (1)

■ High–energy (“small–x") evolution in QCD is a classical
stochastic process

◆ Color Dipole Picture (Master equation)

◆ CGC (Fokker–Planck equation: ‘JIMWLK’)

■ Not exactly equivalent ...

◆ Color Dipole Picture : Unitarization without saturation

◆ CGC (JIMWLK) : Saturation (but no ‘pomeron loops’)
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Outline (1)

■ High–energy (“small–x") evolution in QCD is a classical
stochastic process

◆ Color Dipole Picture (Master equation)

◆ CGC (Fokker–Planck equation: ‘JIMWLK’)

■ Not exactly equivalent ...

◆ Color Dipole Picture : Unitarization without saturation

◆ CGC (JIMWLK) : Saturation (but no ‘pomeron loops’)

■ ... but they both involve Mean Field aspects & Fluctuations

◆ MFA should work better at/near saturation (unitarity):
k⊥ <

∼ Qs (strong color fields, large occupation numbers)

◆ Fluctuations are more important in the dilute regime at
high momenta: k⊥ À Qs
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Outline (1)

■ High–energy (“small–x") evolution in QCD is a classical
stochastic process

◆ Color Dipole Picture (Master equation)

◆ CGC (Fokker–Planck equation: ‘JIMWLK’)

■ Not exactly equivalent ...

◆ Color Dipole Picture : Unitarization without saturation

◆ CGC (JIMWLK) : Saturation (but no ‘pomeron loops’)

■ ... but they both involve Mean Field aspects & Fluctuations

■ BK equation: the simplest MFA, common to both formalisms

◆ Closed, non–linear equation. User friendly !

◆ Solutions to BK: unitarity, geometric scaling
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■ One could expect MFA (BK equation) to correctly describe
the approach towards saturation ...
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Outline (2)

■ One could expect MFA (BK equation) to correctly describe
the approach towards saturation ...

■ ... but this is actually not true !

◆ The growth of the saturation momentum is driven by
high–k⊥ fluctuations

◆ BK evolution violates unitarity at intermediate steps
(Mueller & Shoshi, 2004)
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Outline (2)

■ One could expect MFA (BK equation) to correctly describe
the approach towards saturation ...

■ ... but this is actually not true !

■ Deep analogy with problems in statistical physics

◆ ‘Fluctuating pulled fronts’

◆ The growth of the saturation momentum is slowed down

◆ Geometric scaling is violated
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Outline (2)

■ One could expect MFA (BK equation) to correctly describe
the approach towards saturation ...

■ ... but this is actually not true !

■ Deep analogy with problems in statistical physics

◆ ‘Fluctuating pulled fronts’

◆ The growth of the saturation momentum is slowed down

◆ Geometric scaling is violated

■ The effects of the fluctuations are huge but cannot be easily

estimated (except in asymptotic limits: αs → 0, Y → ∞)
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Outline (2)

■ One could expect MFA (BK equation) to correctly describe
the approach towards saturation ...

■ ... but this is actually not true !

■ Deep analogy with problems in statistical physics

◆ ‘Fluctuating pulled fronts’

◆ The growth of the saturation momentum is slowed down

◆ Geometric scaling is violated

■ The effects of the fluctuations are huge but cannot be easily

estimated (except in asymptotic limits: αs → 0, Y → ∞)

■ The fluctuations are not correctly described by the JIMWLK,
or Balitsky, equations !
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Outline (2)

■ One could expect MFA (BK equation) to correctly describe
the approach towards saturation ...

■ ... but this is actually not true !

■ Deep analogy with problems in statistical physics

◆ ‘Fluctuating pulled fronts’

◆ The growth of the saturation momentum is slowed down

◆ Geometric scaling is violated

■ The effects of the fluctuations are huge but cannot be easily

estimated (except in asymptotic limits: αs → 0, Y → ∞)

■ The fluctuations are not correctly described by the JIMWLK,
or Balitsky, equations !

■ A Langevin equation for saturation with pomeron loops
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Color Dipole Picture (Mueller, 94)

“Color Dipole" = A quark–antiquark pair in a color singlet state

■ Dipole evolution ⇐⇒ Dipole splitting

B Leading–log Y ≡ ln 1/x (BFKL) + Large Nc

x

y

x

y
zz

p(x, y|z) d2
z dY =

αsNc

π
dY ×

(x − y)2

(x − z)2(z − y)2
d2

z

2π

■ PN (Y ) ≡ PN (z1, z2, . . . ,zN−1|x0, y0, Y )

∂PN

∂Y
= −

[ N∑

i=1

∫

z

p(zi−1, zi|z)

]

PN +

N−1∑

i=1

p(zi−1, zi+1|zi) PN−1

B Master equation for a classical Markovian process
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Dipole–Dipole Scattering

COM frame : Y1 = Y2 = Y/2 , Y = ln s (rapidity)

■ Low energy: Single scattering (T ¿ 1)

Two gluon exchange between a pair of dipoles

y
0x

0

y
x

Tone−scatt(r, r0, Y ) ≈ α2
s n2(r, r0, Y/2) ∼ α2

s eωPY

ωP = (4 ln 2)αsNc/π : BFKL intercept

■ “One (BFKL) pomeron exchange"
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Dipole–Dipole Scattering

COM frame : Y1 = Y2 = Y/2 , Y = ln s (rapidity)

■ Low energy: Single scattering (T ¿ 1)

Two gluon exchange between a pair of dipoles

y
0x

0

y

x

Tone−scatt(r, r0, Y ) ≈ α2
s n2(r, r0, Y/2) ∼ α2

s eωPY

ωP = (4 ln 2)αsNc/π : BFKL intercept

■ “One (BFKL) pomeron exchange"
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Multiple Scattering: Unitarization ...

■ High energy: Multiple scattering (T ≡ 1 − S ∼ O(1))

Simultaneous scattering between several pairs of dipoles

y
0x

0

y
x

S(Y ) =

∞∑

N,N ′=1

∫

dΓNPN (Y/2)

∫

dΓN ′PN ′(Y/2) exp

{

−

N∑

i=1

N ′

∑

j=1

T0(i|j)

}

Unitarization configuration by configuration : SN×N ′ ≤ 1

■ “Pomeron loops"
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... without Saturation !

■ Dipole picture neglects saturation effects

(non–linear effects inside the wavefunction)

y
0x

0

y
x

α2
s n2(Y/2) ∼ 1 but α2

s n(Y/2) ∼ α2
s eωPY/2 ¿ 1

B Restricted to the COM frame and to a finite energy range:

Yc
<
∼ Y ¿ 2Yc with Yc ∼

1

ωP

ln
1

α2
s
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The Color Glass Condensate (MV, BK, JIMWLK)

■ A classical, stochastic, effective theory for gluon saturation

Small–x gluons ←→ Classical color fields radiated

by ‘sources’ (partons) with larger values of x

■ High gluon density ←→ Strong classical color fields

=⇒ Non–linear effects leading to saturation (A ∼ 1/g)
� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

ρ

small-x gluon

fast partons

k
Α[ρ]

+
= xP

+

■ Non–linear evolution : Quantum gluons rescatter off the
classical background fields
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The Color Glass Condensate (MV, BK, JIMWLK)

■ A classical, stochastic, effective theory for gluon saturation

Small–x gluons ←→ Classical color fields radiated

by ‘sources’ (partons) with larger values of x

■ High gluon density ←→ Strong classical color fields

=⇒ Non–linear effects leading to saturation (A ∼ 1/g)
� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

ρ

small−x gluon

fast partons

k
Α[ρ]

+
= xP

+

■ No (‘pomeron’) loops : Sub-dominant so long as the
classical fields are relatively strong (A À 1)
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Dipole – CGC Scattering

■ Dipole frame : the dipole is nearly at rest and unevolved

Evolved

dipole

CG( C)

y

x
Bare  dipole

.

x0

0y

.

.

SY =
1

Nc

〈

tr
(
V †

x
Vy

)〉

Y
=

∫

D[A+] WY [A+]
1

Nc
tr

(

V †
x
[A+] Vy[A+]

)

V †
x
[A+] ≡ P exp

(
ig

∫
dx−A+

a (x−, x)ta
)

(Wilson line)

■ WY [A+]: probability distribution for the classical field A+

■ Unitarization via multiple scattering off the classical field
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Non–linear evolution in CGC

■ JIMWLK equation (a functional Fokker–Planck eq.)

∂WY [A]

∂Y
=

1

2

∫

x,y

δ

δAa
Y (x)

χab(x, y)[A]
δWY

δAb
Y (y)

■ Coupled equations for Wilson line correlators: Balitsky eqs.

■ Dipole–CGC scattering amplitude: T =1−S, S = 1
Nc

tr(V †
x
Vy)

∂

∂Y

〈
T (x, y)

〉

Y
=

αsNc

π

∫

z

(x−y)2

(x−z)2(y−z)2
〈

−T (x, y) + T (x, z) + T (z, y)
︸ ︷︷ ︸

2-point ftions

+ T (x, z)T (z, y)
︸ ︷︷ ︸

3-point ftion

〉

Y

Y y

x
z

d
d =

y

x

y

x
z
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Balitsky–Kovchegov equation

■ Mean field approximation =⇒ A closed equation !
〈
T (x, z)T (z, y)

〉

Y
≈

〈
T (x, z)

〉

Y

〈
T (z, y)

〉

Y

◆ Incoherent multiple scattering
◆ Justified if CGC = Large nucleus (A À 1)

& not too high energies (Kovchegov, 99)

■ Numerous studies (analytic & numerical)
■ The same universality class as the F–KPP equation

(Munier, Peschanski, 03)

∂Y T (ρ, Y ) = ∂2
ρT (ρ, Y )

︸ ︷︷ ︸

diffusion

+ T (ρ, Y )
︸ ︷︷ ︸

growth

− T 2(ρ, Y )
︸ ︷︷ ︸

recombination

B A large variety of situations in physics, chemistry, biology

■ Two fixed points: T = 0 (unstable) and T = 1 (stable)

■ “Traveling wave" : A front propagating into the unstable state
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Traveling Wave

T (r, Y ) ≡ T (ρ, Y ) with ρ ≡ ln 1
r2Q2

0

(“small dipole" = “large ρ")

T

ρ

1/2

1
ρ
s
( Y) Y=

from BFKL

= 4.883...

Y1

Y1
)( ρ

s

α s

_
λ0

γ
0 = 0.627...

λ0

■ T ¿ 1 : Linearized (BFKL) eq. : T ∼ r2γ eωY ∼ e−(γρ−ωY )

■ T ∼ 1 : The non–linear term saturates the growth at T = 1

■ T = 1 for r = 1/Qs(Y ) or ρ = ρs(Y ) (≡ lnQ2
s(Y )/Q2

0 )

Q2
s(Y ) ∝ eλ0ᾱsY : Saturation momentum
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Traveling Wave

T (r, Y ) ≡ T (ρ, Y ) with ρ ≡ ln 1
r2Q2

0

(“small dipole" = “large ρ")

T

ρρ

1/2

1

s
(Y )2

ρ
s
( Y) Y=

from BFKL
2YY1

> Y1

Y1
)( ρ

s

α s

_
λ0

γ
0 = 0.627...

λ0 = 4.883...

■ T ¿ 1 : Linearized (BFKL) eq. : T ∼ r2γ eωY ∼ e−(γρ−ωY )

■ T ∼ 1 : The non–linear term saturates the growth at T = 1

■ T = 1 for r = 1/Qs(Y ) or ρ = ρs(Y ) (≡ lnQ2
s(Y )/Q2

0 )

Q2
s(Y ) ∝ eλ0ᾱsY : Saturation momentum
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Geometric Scaling

■ The shape of the front does not change in the course of the

propagation =⇒ “Geometric scaling"

T (ρ, Y ) ' e−γ0(ρ−ρs(Y )) ≡
(
r2Q2

s(Y )
)γ0 for r ¿ 1/Qs(Y )

(E.I., Itakura, McLerran, 02 ; Mueller, Triantafyllopoulos, 02)

■ A natural explanation for a new scaling law identified
in the HERA data for DIS at small–x

(Staśto, Golec-Biernat, and Kwieciński, 2000)

■ Relevant for the high–pT suppression observed in d-Au
collisions at RHIC

(Kharzeev, Levin, McLerran, 02 ; E.I., Itakura, Triantafyllopoulos, 04)

■ The saturation exponent λ0 = 4.88..

and the anomalous dimension γ0 = 0.63...

are correctly given by the linearized (BFKL) equation !

WHY ?!
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Pulled front & Fluctuations

■ The propagation of the front is driven by the growth and

spreading of the small perturbations about the unstable state

◆ The front is pulled along by its ‘leading edge’ (T ¿ 1)
◆ Specific to F–KPP equation !

■ The propagation is governed by the linearized equation.

■ The front properties (λ, γ) are strongly sensitive to
small fluctuations !

◆ Fluctuations
(
〈T 2〉 − 〈T 〉2

)
are important precisely in the

leading edge, where 〈T 〉 ¿ 1

■ Mean field approximation is not reliable !

■ Fluctuations due to the discreteness of the particle number

T (r, r0, Y ) ≈ α2
s n(r, r0, Y ) : Discrete !

n(r, r0, Y ) = dipole occupation number = 0, 1, 2, ...
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Saturation exponent with fluctuations

■ Unitarity (T ∼ 1) ⇐⇒ Saturation (n ∼ 1/α2
s)

■ BK eq. : Front propagation is driven by growth in the tail.

■ Discrete system : Diffusion of the dipoles in the foremost bin.
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� � �� � �� � �� � �� � �
� �� �� �� �� �� � �� � �� � �� � �� � �

� �� �� �� �� � �� � �� � �� � �� � �
� �� �� �� �� �� � �� � �� � �� � �� � �
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! !! !! !! !! !" " "" " "" " "" " "" " "

# ## ## ## ## #
$ $ $$ $ $$ $ $$ $ $$ $ $
% %% %% %% %% %& & && & && & && & && & &

' '' '' '' '
( ( (( ( (( ( (( ( (( ( (
) )) )) )) )

* * ** * ** * ** * ** * *
+ ++ ++ ++ ++ +, , ,, , ,, , ,, , ,, , ,

- -- -- -- -. . .. . .. . .. . .. . .
/ // // // // /0 0 00 0 00 0 00 0 00 0 0

1 11 11 11 12 2 22 2 22 2 22 2 22 2 2
3 33 33 33 33 34 4 44 4 44 4 44 4 44 4 4

5 55 55 55 55 5
6 6 66 6 66 6 66 6 66 6 6
7 77 77 77 77 78 8 88 8 88 8 88 8 88 8 8

9 99 99 99 9
: : :: : :: : :: : :: : :
; ;; ;; ;; ;

< < << < << < << < << < <
= == == == == => > >> > >> > >> > >> > >

? ?? ?? ?? ?

■ There should be at least one dipole per bin for the growth to
begin: n ≥ 1, or T >

∼ α2
s

∂Y T (ρ, Y ) = D∂2
ρT (ρ, Y ) + Θ(T − α2

s)
(
T − T 2

)

(Brunnet, Derrida, 97 – finite particle number version of F–KPP)
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Saturation exponent with fluctuations

■ Unitarity (T ∼ 1) ⇐⇒ Saturation (n ∼ 1/α2
s)

■ BK eq. : Front propagation is driven by growth in the tail.

■ Discrete system : Diffusion of the dipoles in the foremost bin.
@ @ @@ @ @@ @ @@ @ @@ @ @
A AA AA AA AA A

B B BB B BB B BB B BB B B
C CC CC CC CC C

D D DD D DD D DD D DD D D
E EE EE EE E

F F FF F FF F FF F FF F F
G GG GG GG GG G

H H HH H HH H HH H HH H H
I II II II I

J J JJ J JJ J JJ J JJ J J
K KK KK KK KK K

L L LL L LL L LL L LL L L
M MM MM MM M

N N NN N NN N NN N NN N N
O OO OO OO O

P P PP P PP P PP P PP P P
Q QQ QQ QQ QQ Q

R R RR R RR R RR R RR R R
S SS SS SS SS S

T T TT T TT T TT T TT T T
U UU UU UU UU U

V V VV V VV V VV V VV V V
W WW WW WW W

X X XX X XX X XX X XX X X
Y YY YY YY YY Y

Z Z ZZ Z ZZ Z ZZ Z ZZ Z Z
[ [[ [[ [[ [

\ \ \\ \ \\ \ \\ \ \\ \ \
] ]] ]] ]] ]] ] ^̂ ^^̂ ^^̂ ^^̂ ^^̂ ^

_ __ __ __ _

ρ

`̀ ``̀ ``̀ ``̀ ``̀ `
a aa aa aa aa a

b b bb b bb b bb b bb b b
c cc cc cc cc c

d d dd d dd d dd d dd d d
e ee ee ee e

f f ff f ff f ff f ff f f
g gg gg gg gg g

h h hh h hh h hh h hh h h
i ii ii ii ii i

j j jj j jj j jj j jj j j
k kk kk kk k1> Y
1Y Y2

ρ

T

1
l l ll l ll l ll l ll l l
m mm mm mm m

n n nn n nn n nn n nn n n
o oo oo oo oo o

p p pp p pp p pp p pp p p
q qq qq qq qq q

r r rr r rr r rr r rr r r
s ss ss ss ss s

t t tt t tt t tt t tt t t
u uu uu uu u

v v vv v vv v vv v vv v v
w ww ww ww ww w

x x xx x xx x xx x xx x x
y yy yy yy y

z z zz z zz z zz z zz z z
{ {{ {{ {{ {{ {

n

1/α2
s

■ The speed of the front (saturation exponent) for αs → 0 :

λs ≡
dρs(Y )

ᾱs dY
≈ λ0 −

D

ln2(1/α2
s)

, λ0 ≈ 4.88, D ≈ 150 (!)

(consistent with Mueller & Shoshi, 2004)
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Front diffusion

■ The position ρs(Y ) of the front shows a diffusive wandering
around its average value

〈ρs(Y )〉 = λsᾱsY, 〈ρ2
s〉 − 〈ρs〉

2 = DfrontᾱsY, Dfront ∼
1

ln3(1/α2
s)

 0

 0.2

 0.4

 0.6

 0.8

 1

■ At large Y , geometric scaling is badly violated !
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Front diffusion

■ The position ρs(Y ) of the front shows a diffusive wandering
around its average value

〈ρs(Y )〉 = λsᾱsY, 〈ρ2
s〉 − 〈ρs〉

2 = DfrontᾱsY, Dfront ∼
1

ln3(1/α2
s)

 0

 0.2

 0.4

 0.6

 0.8

 1

■ Large Y ... but HOW large ??
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Fluctuations + Saturation = Pomeron loops

■ A unified description of saturation with fluctuations:

CGC for strong fields + Dipole picture in the dilute regime

∂Y T (ρ, Y ) = ∂2
ρT (ρ, Y )

︸ ︷︷ ︸

diffusion

+ T (ρ, Y )
︸ ︷︷ ︸

growth

− T 2(ρ, Y )
︸ ︷︷ ︸

recomb.

+
√

α2
sT η(ρ, Y )

︸ ︷︷ ︸

noise

〈η(ρ, Y )〉 = 0, 〈η(ρ, Y )η(ρ′, Y ′)〉 = δ(ρ − ρ′) δ(Y − Y ′)

■ Noise term ⇐⇒ Dipole multiplication in the dilute regime

∂Y 〈T (r1)T (r2)〉 ∼ α2
s 〈T (r1 + r2)〉 : Dominant when T < α2

s
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Fluctuations + Saturation = Pomeron loops

■ A unified description of saturation with fluctuations:

CGC for strong fields + Dipole picture in the dilute regime

∂Y T (ρ, Y ) = ∂2
ρT (ρ, Y )

︸ ︷︷ ︸

diffusion

+ T (ρ, Y )
︸ ︷︷ ︸

growth

− T 2(ρ, Y )
︸ ︷︷ ︸

recomb.

+
√

α2
sT η(ρ, Y )

︸ ︷︷ ︸

noise

〈η(ρ, Y )〉 = 0, 〈η(ρ, Y )η(ρ′, Y ′)〉 = δ(ρ − ρ′) δ(Y − Y ′)

■ Splitting + Recombination =⇒ Pomeron loops
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Conclusions

■ JIMWLK eq. itself is a kind of “mean field approximation"

■ The effects of the fluctuations are huge !
◆ very slow convergence of λs towards λ0 when αs → 0

◆ lowest–order estimate: λs < 0 unless αs < 0.05 !!
◆ useless for practical applications

■ Urgent need for better estimates & numerics
◆ The Langevin equation is well suited for that !

■ Exact solutions ??
◆ conformal symmetry

■ Enriching correspondence with numerous problems in
statistical physics, chemistry, biology, ...

◆ biological pattern formations, directed percolation,
chemical reactions, spreading of epidemics, solar
activity (dynamo waves in the sunspots), computer
science (digital search trees and data compression) ...
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