High-p $_{\perp}$ and Jet Measurements by the PHENIX Experiment at RHIC

Prof. Brian A. Cole. Columbia University For the PHENIX Collaboration

Particular thanks to:

Jiangyong Jia, Saskia Mioduszewski, Mike Tannenbaum for their contributions to this talk.

Also subsequent PHENIX /PHENIX collaborator talks on the subject:

Henner Buesching, David d'Enterria, Barbara Jacak, Klaus Reygers,...

High-p_T **Suppression** \rightarrow **Quenching**

The one-plot summary:

- Factor of 4-5 suppression of π yield in central (0-10%) Au-Au
- Little/no suppression in peripheral collisions.
- No suppression in d-Au
- \Rightarrow Energy density = 15 GeV/fm³ at τ = 0.2 fm in central Au+Au
- Our job is done .. NOT!

- What do the results tell us about the medium?
- How well do the data constrain "models" of
- How can we better test understanding of
- Jet tomography ????

Energy Loss: Theory

- Look at 2 theoretical analyses applied to data
 - Gyulassy, Levai, Vitev formalism
 - Wang & Wang (+) analysis
 - with/without absorption of energy from medium

⇒ Good description of the suppression!?

<u>BUT</u>

- The magnitude of su
- The only remaining '
 - $-p_T$ dependence of the
 - In particular, \approx consta
- However, the model
 - GLV: higher order cor shadowing, quark/glu
 - Wang & Wang: feedb
- Need more tests ...

PHENIX Detector

- Focus on high-p_T / penetrating probes
 - Central arms: $\Delta \phi = 1\pi$, $\Delta \eta = 0.7$

Counters

• In this talk: focus on π^0 production for simplicity

Empirical Energy Loss Analysis

> p-p π^0 spectrum well described by power law: $\frac{dn}{dp_T^2} = \frac{A}{p_T^n}$ with n = 8.1±0.1 > Define p_T shift, $p_T^S = p_T^U - S(p_T^U) = (1 - S_{loss}) p_T^U$ $_{\odot}$ p_T^U = p_T with no energy loss $_{\circ} p_{T}^{s} = p_{T}$ with energy loss $_{\rm O}$ S_{loss} is fraction of p_T lost > Then, given S_{loss} , $\frac{dn}{dp_{T}^{S}} = \frac{dn}{dp_{T}^{U}} \frac{dp_{T}^{U}}{dp_{T}^{S}} = (1 - S_{loss})^{n-2} \frac{A}{(p_{T}^{S})^{n-1}}$ > Now express in terms of R_{AA} : $R_{AA} = \frac{(1 - S_{loss})^{n-2} A / p_T^{n-1}}{A / p_T^{n-1}} = (1 - S_{loss})^{n-2}$ $S_{loss} = 1 - R_{AA}^{1/(n-2)}$

Empirical Energy Loss Applied

- Gyulassy, Vitev, Wang: $\Delta E \propto N_{\text{part}}^{2/3}$
 - -1D expansion, simple geometric scaling
- \Rightarrow Well reproduced by experimental data.
- More easily seen in S_{loss}(N_{part})

Angle wrt Reaction Plane

- How to further test understanding of suppression? — Another way to vary length of parton path in medium?!
- Change the angle of hadron(parton) relative to non-central collisions.
 - Spatial anisotropy $\rightarrow \Delta E(\phi)$
- Use "elliptic flow" to find \vec{b} irection.
 - -Study π^0 yield vs ϕ , dn/d $\phi \sim 1+2V_2 \cos(2\phi)$

İħ

π^0 Production *wrt* Reaction Plane

- Find reaction plane with PHENIX Beam-Beam counter
- Measure π^0 yield vs angle relative to reaction plane, $\Delta \phi$
- **Correct for measured reaction plane resolution.**

Suppression vs $\Delta \phi$

Basic Geometry Considerations

- Suppose energy loss (S_{loss}) has simple dependence on path length: $S_{loss}(L) = cL^m$
- Then, also assume: $L(\Delta \phi) = L_0 + L_2 \cos(2\Delta \phi)$
- So, in this simple picture $(\gamma = L_2 / L_0)$:
 - $-S_{loss}(\Delta\phi) = c[L_0 + L_2\cos(2\Delta\phi)]^m = cL_0^m [1 + \gamma\cos(2\Delta\phi)]^m$

PH

• For m =1 or γ small,

$$- S_{loss}(\Delta \phi) \approx \langle S_{loss} \rangle [1 + \gamma \cos(2\Delta \phi)]^{m}$$

Then

•
$$S_{loss}(\Delta\phi) - \langle S_{loss} \rangle \approx m \langle S_{loss} \rangle \gamma \cos(2\Delta\phi) + \frac{m(m-1)}{2} \langle S_{loss} \rangle \gamma^2 \cos^2(2\Delta\phi) + \dots$$

Energy Loss vs Path Length

PHENIX preliminary

• Use Glauber to obtain (ρ_{part})

PH^{*}ENIX

$$\epsilon = \frac{\left\langle y^2 \right\rangle - \left\langle x^2 \right\rangle}{\left\langle y^2 \right\rangle + \left\langle x^2 \right\rangle}$$

- Elliptical geom:
 - $-\gamma = \varepsilon/2.$
- Test $S_{loss} \propto L, L^2$
- S_{loss} ∝ L badly disagrees w/ data.
- S_{loss} ∝ L² somewhat better but still not good.

Centrality & $\Delta \phi$ **Dependence**

- Study π^0 yield vs BOTH centrality, $\Delta\phi$
- Use VERY simple geometric picture: – Obtain $L_{too simple}(N_{part}, \Delta \phi)$ plot vs S_{loss}

10-20%, 20-30%, 30-40%, 40-50%, 50-60%

consistent variation with centrality, Δφ ??

PH^{*}ENIX

- But, with unexpected dependence on L!
- $S_{loss} = -0.04L + 0.01L^2$? \Rightarrow UNPHYSICAL ??
- Or feedback from medium ... Or

More Realistic Geometry

"Canonical" energy loss တိ^{80.25} PHENIX Initial parton (areal) density preliminary 0.2 $\frac{dn_{color}}{dA} \propto \frac{dn_{part}}{dA}$ 0.15 • Intrinsic: $\Delta E \propto L^2$ 0.1 • Assume: $\rho_{\text{color}}(\vec{x}_T) = \rho_{\text{color}}^{\text{init}} \frac{\tau_0}{\tau}$ 0.05 $p_T > 3 \text{ GeV/c}$ • Calculate: $\int d\vec{l} \ \rho_{\text{color}}^{\text{init}}(\vec{l}) \frac{l \tau_0}{l+\tau}$ 1.5 2 2.5 3 0.5 ρ * Length

- For simplicity, still only evaluate path from center.
- No consistent description of centrality, $\Delta \phi$ dependence.

Solid line guides the eye for S_{loss} (N_{part}).

What went wrong ??

PH^{*}ENIX

- Overlap density grows with centrality.
 - All ∆ φ in centrality bin see same overlap density.
- Centralities spread out on horizontal axis.
- Suppose we divide out central density: ρ_{part}(x,y)
 - Works well. Why ???

Most Realistic Geometry

• Incorporate path length fluctuations.

– Weight S_{loss} according to R_{AA}

- Doesn't "fix" centrality dependence.
- Even 5 GeV/c doesn't work ...

PHENIX Jet Studies

- An entire > 1 hour talk by itself.
- Detailed studies of jet properties in p-p, d-Au.
 - -via two-hadron correlations

 $-e.g. \pi^{\pm} (p_T > 5 \text{ GeV}) - \text{charged by J. Jia, Columbia.}$

Jet Correlations in Au-Au

- PHENIX charged- charged (preliminary QM2004)
 - $-2.5 < p_T^{trig} < 4 \text{ GeV/c}, 1.0 < p_T^{assoc} < 2.5 \text{ GeV/c}$
 - -Additional associated yield in same jet in Au+Au
 - But same angular width observed !!!

Stay tuned for final PHENIX Au+Au jet/di-jet results ...

Summary, Conclusions

- High- p_T suppression unequivocally established.
 - Centrality dependence reproduces simple 1-D expansion scaling prediction.
- But, dependence of suppression on $\Delta \phi$ does not fit "canonical" picture of suppression.
 - Requires L² (without $1/\tau$) dependence of energy loss?
 - - $\Rightarrow \Delta \phi$ variation of suppression (S_{loss}) too rapid compared to centrality variation.
 - Except for (overly) simple geometry.

 \Rightarrow No growth of "density" with centrality ???

 Simple energy loss picture + geometry is not sufficient to describe yields(φ) (or v₂)

Summary/Conclusions (2)

- Do the data provide room for/evidence of energy absorption from the medium ?
 - One can consider such an effect simply a "complication" of jet quenching
 - ⇒But observation of jets absorbing thermal energy from the medium would be pretty interesting …
- However, other effects at ~ 3 GeV/c may also affect $\Delta \phi$ dependence of hadron yields
 - \Rightarrow Residual soft flow effects ?
 - \Rightarrow Recombination effects ?
 - \Rightarrow Something completely different ?
- Clearly there's something we don't understand.
 - "Higher order" effects in energy loss (opacity exp.)?
- Important: there's still a problem above 5 GeV/c.

Summary/Conclusions(3)

- We are not the first to point out these problems
 - Shuryak: Phys. Rev. C: 027902,2002.
 - Drees, Feng, Jia: nucl-th/0310044.
- High- p_T suppression still not yet a tool for "tomography" ... as this talk demonstrates.
 - Have work to do to understand even single hadron suppression. Final version of π^0 vs $\Delta\phi$ soon...
- Jet produced hadron pair correlation results have potential to blow this field wide open ...
 - -Iff we can understand medium induced energy loss.
 - Radiation becomes a probe of the medium!
 - -Already starting to see such results/ideas:
 - \Rightarrow STAR jet η broadening, Shuryak *et al* shock wave ...

A Closer Look

- -But, energy loss analysis applied to hadron momenta?
- In principle, not a problem because we observe a power-law spectrum!
- Given parton spectrum: d^2n/dk_T^2
- Hadron spectrum given by:
 - -But if $d^2n/dk_T^2 = A/k_T^n$

-Then:
$$\frac{d^2n}{dp_T^2} = \frac{A}{p_T^n} \int_0^1 \frac{dz}{z^2} D(z) z^n$$

$$\frac{d^2 n}{dp_T^2} = \int_0^1 \frac{dz}{z^2} D(z) \frac{d^2 n}{dk_T^2} \bigg|_{k_T = \frac{p_T}{z}}$$

PH^{*}ENIX

 \Rightarrow Power law spectrum begets power law spectrum.

 \Rightarrow Our estimated S_{loss} \approx applies to parton momenta too.

 Beware: fluctuations reduce observed S_{loss} relative to true value by factor ~ 2 (Baier, GLV).

More Realistic Geometry L² (L³/ τ) test

PH

- Try different L dependence: – Still not consistent
- Unless we again divide out ρ_{part}(x,y) ??

N_{part} **Dependence of Key Parameters PH**^{*}/_{*}

PHENIX Centrality (Glauber) analysis:

$$\varepsilon = \frac{\left\langle y^2 - x^2 \right\rangle}{\left\langle y^2 + x^2 \right\rangle}$$

For ellipse, $\varepsilon \approx 2\gamma$

Observe:

> For more peripheral collisions, $R_{AA} \downarrow$ but $\epsilon \uparrow$

 $\succ \gamma \langle S_{loss} \rangle \approx \text{constant}$

- ➤ Amplitude of S_{loss}(Δφ) nearly constant !
- Pure accident !

A Closer Look

- Energy loss occurs before fragmentation
- . But, empirical energy loss applied to hadron momenta!?
 - _ Isn't this a problem? In principle, no.
 - \Rightarrow Because we observe a power-law spectrum.
- . Given a parton spectrum, d^2n/dk_T^2
- . We obtain a hadron spectrum, $\frac{d^2n}{dp_T^2} = \int_0^1 \frac{dz}{z^2} D(z) \frac{d^2n}{dk_T^2} \bigg|_{k_T = \frac{p_T}{z}}.$

• If
$$\frac{d^2 n}{dk_T^2} = \frac{A}{k_T^n}$$
, then $\frac{d^2 n}{dp_T^2} = \frac{A}{p_T^n} \int_0^1 \frac{dz}{z^2} D(z) z^n$.

- . So, if we observe a power-law spectrum,
 - \Rightarrow parton spectrum should also be power-law
 - \Rightarrow Our estimated S_{loss} applies to parton momenta too.
- . What about fluctuations in $\Delta E, z$?
 - $_{\scriptscriptstyle -}$ Reduce the apparent $S_{\scriptscriptstyle loss}$ relative to the true

By a factor of ~ 2 (Baier, GLV).

Reaction Plane Correction

Reaction plane
resolution:

$$\sigma = \sqrt{2\cos(\Psi_{BBC_N} - \Psi_{BBC_S})}$$

- Calculate raw V₂
- Correct for resolution
- Multiply yield(ϕ) by

 $\frac{1 + v_2^{corr}\cos(2\Delta\phi)}{1 + v_2^{raw}\cos(2\Delta\phi)}$

PH

IX