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The Relativistic Heavy lon Collider (RHIC) at Brookhaven National
Laboratory collides all types of ions (Au+Au, d+Au, and Cu+Cu planned
for run 5) at CM energies 20<V synS200 GeV and spin polarized
(transverse or longitudinal) protons at CM energies up to V¥s=500 GeV

— probe QCD states of matter and spin structure of proton
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Obijectives of RHIC spin
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Reconsiucied, p ., are sensitive to quark and

Sensitivity of A, for y+jet coincidences to three antiquark polarization.

models of gluon polarization consistent with
polarized deep inelastic scattering data.

« How does the transverse
spin structure (transversity)
Gehrmann and Stirling, Phys. Rev. D53 (1996) 6100. compare to the longitudinal
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Why Consider Forward Physics at a Collider?

Dynamics

Spin-dependent partonic processes depend on scattering angle (6*) and the
quark polarization (4,7) is known from polarized DIS to be proportional to In x.
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— Important to measure p; and rapidity dependence of particle
yields and spin asymmetries.
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Why Consider Forward Physics at a Collider?

Kinematics
Deep inelastic scattering Hard scattering hadroproduction
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How can Bjorken x values be selected in hard scattering?

X [ e + &
1. Initial partons are collinear g j/\/S ( )

- - . —

2. Partonic interaction is elastic xg ﬁ11_9;”/\/‘5‘ ( Pl E—ng)
= P11 = Pr2
Studying pseudorapidity, n=-In(tan6/2), dependence of particle
production probes parton distributions at different Bjorken x values

and involves different admixtures of gg, gg and gq’ subprocesses.
L.C. Bland, Hard Probes 5
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Simple Kinematic Limits

Mid-rapidity particle detection: e _N_LQIPQC_ZD _(YO_gt_eIS_ahg)_ |

n,=0 and <n,>=0

= X, =X, =Xp = 2 pr/ s

Large-rapidity particle detection:

n;>>"N,
pr . (GeVic)

= x, = xp el = x; (Feynman x), and

~ —(M 1+
xg = Xpe (M)

— Large rapidity particle production and correlations involving large
rapidity particle probes low-x parton distributions using valence quarks

L.C. Bland, Hard Probes 6



How can one infer the dynamics of particle production?
Particle production and correlations near nN=0 in p+p collisions at Vs =200 GeV
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Forward nt° production in hadron collider

2~ 2 2E7;
Q pT xF~

=

s =2E, Vs
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X =

4
(collinear approx.)G

* Large rapidity 7 production (1,~4) probes asymmetric partonic collisions

p+p— ', =3.84s=200Gel -

* Mostly high-x valence quark + low-x gluon M
03 <x,< 0.7 0'6-/.
<Xq> NLO pQCD |

*0.001<x,<0.1 o

Jaeger,Stratmann,Vogelsang,Kretzer

» <z> nearly constant and high 0.7 ~ 0.8 ~ <X,>
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But, do we understand forward n’ production in p + p?
At Vs << 200 GeV, not really....
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Bourrely and Soffer (hep-ph/0311110, Da‘ta references therein):
NLO pQCD calculations underpredict the data at low Vs from ISR
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Forward Physics at STAR
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Di-photon Mass Reconstruction
STAR Forward ©¥ Detector (Run 3)

* Pb-glass reconstruction (no SMD) « Fiducial volume > 1/2 cell width from edge

* Number of photons found = 2 » Energy sharing z =[E,—E,|/ (E,+E,) < 0.7
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2000 F M, =135.7£0.3 Mav/2" 500 o M =141.5£0.6 MaV/ & 800 _ M, =132.220.4 MavV/2" 200 _ M, =140.Bx0.9 MaV/ &
1750 i— 400 E | 800 | 175 ;— .
! . ! 00 2 '.
w1 SESI ] 30<ES4S wo b 1 25<E,<35 | o0 [ 35<E,<45
1000 — [GeV] 200 _ igg : i [GeV] 100 —
750 F 2 00 E 75
o0 _ 100 — 200 — 50 e
20 £ [ r g 0 0 SR
P 0 o o4 65 Co 01 6z 03 o4 65 P o e o 65 Co 01 6z 03 o4 b5
100 F m=145%1.1 Mev/ & 1 225 F M,=150.2%1.3 MeV/& a0 | M~14520.5 MeV,/ [ W,=151.9+2.1 Mev/C
I | 2 F s b 1z b .
80 - : 175 | - E 10
i o5 B F
50 - 45<E1‘c<55§ 125 E_ 55<En<99 25 E_ 45<En<55 & - 55<En<99
40 L I 10 ;— 2 g_ &
C 78 E 1% 4 [
a0 [ 5 F 1 = | Sﬂq’%
i 25 B[/ 5 b *F i
o Loty a1y Seeudl g Eoodd . MOTIGIT p Eomelliii, i S A s e
0 0.5 "0 0.5 0 05 O 0.5
» Absolute gain determined from 7° peak position for each tower MW[GeV/CZ]
» current gain calibration of FPD from run 3 known to ~10%
= cross section in d+Au requires better calibrations
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N; N Vs =200GeY pa+pon +X
Q40 | o B (=38 - hep-ex/D310058
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-g_ — KKPFF.
el 1 L - Kretzer F.F.
o
B r
g
“—g § m)=3.8
- Mp=3.3 "™,
oo b =SS
1 g
0 " Normalization
- Uncertainty = 17%
4 ®p= 15 17 19 24 " 22 Gevic - W
10 fpp= 23 28 30 34  GeVic—®
25 30 35 40 45 50 55 60 65
Em: (GeV)

STAR data consistent with Next-to-Le

What about particle correlations?

|0rward ¥ Inclusive Cross Section

 STAR data from run-2 prototype
FPD at

«(m)= 3.8 (hep-ex/0310058,
Phys. Rev. Lett. 92 (2004)
171801)

* ()= 3.3 (hep-ex/0403012,
Preliminary)

* NLO pQCD calculations at fixed n
with equal factorization and
renormalization scales = p;

 Solid and dashed curves differ
primarily in the g — ©t fragmentation

JeRREOrder pQCD calculations
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PYTHIA: a guide to the physics

Forward Inclusiye % Cross-Section: Subprocesses involved:
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Why forward physics at STAR?

Rapidity interval (forward - mid rapidity) correlations

Wide acceptance mid-rapidity
detector & unobstructed view at
forward rapidity

Broad rapidity range at STAR
enables nearly complete coverage of

p+p —> A + X, v's = 200 GeV, n,=3.8 (PYTHIA, 3075) ) . .

30 < E,< 40 GeVand I, — 7,1 < 0.7 recoil parton kinematics

Spin effects with large An
correlations?

10

Nuclear enhancement of gluon
1 field :
A'3x ~ 6x (Au case)?
* FPD: |n| ~ 4.0

Log10(Xgiuon)

+F  FTPC TPC  FTPC |[°~ « TPC and Barrel EMC: |n| < 1.0
LS PN .|l - Endoap EMC: 1.0<n<2.0

-5 —4 -3 —2 -1 0 1 2 3 4 5 15

Newon *FTPC:2.8<|n|<3.8



Back-to-back Azimuthal Correlations
with large rapidity interval

Beam View Top View Fit 8 = ¢ — ®, -, normalized
;7 N\, Triggerby distributions and with
[ \ \\ / forward 1 Gaussian+constant
| | P S =141+1.1%
\ / // \ -E,>25GeV 3 [ B=71.841.3%
\_ 7 \\ & 0.21 = 0.8240.06
Midrapidity h* tracks in TPC % 0
SRR
¢ -0.75<1n<+0.75 é = O
Leading Charged Particle(LCP) :g’
O (0

* pr>0.5GeV/e 0 2 4 6

0 = Or — Opcp
S = Probability of “correlated” event under Gaussian

B = Probability of “un-correlated” event under constant

o, = Width of Gaussian 10
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PYTHIA prediction
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Do we understand forward =° production at RHIC?

« NLO pQCD agrees with inclusive cross section measurement,
unlike lower Vs data

. agrees with
inclusive cross section measurement, unlike lower Vs data

* PYTHIA says large x, large n n come from 2— 2 (& 2— 3) parton
scattering, with small contributions from soft processes

- Back-to-back large rapidity gap particle correlations agree
with PYTHIA

— Forward nt® meson production at RHIC energies
comes from partonic scattering

» Spin effects

Important result for: « Comparison with d + Au

18
* Flavor tagging



Measurements with Transversely Polarized Beam
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Large Analyzing Powers at RHIC

*TAR

STAR collaboration, hep-ex/0310058, . _
® e T mesons In agreement with several models including
Q © Total ener 1 : P
S 04 | eneray different dynamics:
= — Collins ®
Odz Sivers )
> | ::I::';:::tﬂ:':‘f T )/ = Sivers: spin and k, correlation in initial
= state (related to orbital angular
= 0.2 momentum?)
) : T
< = Collins: Transversity distribution
& function & spin-dependent
0.0 fragmentation function
= Qiu and Sterman (initial-state) / Koike
- 1 (final-state) twist-3 pQCD calculations
(Pr)= 10 1113 15 18 21 24 GeVic
0292 04 06 08
Xp

L.C. Bland, Hard Probes 20



Dynamical Origins of Forward Analyzing Power (I)
Collins effect:

Transversely polarized quark in

the final state can fragment S h
into more (or less) hadronsto ~ 3) / kT
Left 4 >
than S
Right g ®©

>
\1 kT
Isolating Collins effect requires measurement of h
* Collins angle: cos ¢¢c = (py X Pp) ® S
« thrust axis of jet

Provides information on

« transversity distribution: 6q(x,Q?) = g+(x) - q,(x) (required to make final-state
transversely polarized quark)

« for non-relativistic quarks, 8q(x,Q?) = Aq(x,Q?) = q,(x) — q.(x), helicity
distribution = transversity/helicity distribution differences probe hadronic’
structure



Dynamical Origins of Forward Analyzing Power (II)

Sivers effect:

Flavor-dependent correlation between the proton spin (S ), momentum
(P,) and transverse momentum (k) of the unpolarized partons inside.
(Initial state effect)

Sp-(P,xXk)
S5 |125 k1|

fq(XakTasp) = fq(XﬂkT)_l_%A];[fq(X?kT)

Where A N is the Sivers Function — probed in inclusive
particle production via ‘trigger bias’ selection of k;

Related to partonic orbital angular momentum within proton

L.C. Bland, Hard Probes 22
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L.C. Bland, Hard Probes
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d + Au: Possible Color Glass Condensate at RHIC?
. General expectations of CGC:

T related to rapidity o
T= ln(/x ] produced hadrons. Suppression of forward particle production
A
T} Q:(T) Q4(T) N Rfov D. Kharzeev, hep-ph/0307037
Non-linear «——/— Linear g | ?05
s AS'y grows
1.25
T, (kl) L Parton Gas 1
. Fixed n,, as E, & py, grows PR N N ——
BFKL ’ 0.5 o
i 0.25
_ : DGLAP 1 2 3 1 5 k/QS
Fixedipy, ,as y grows Brahms data shows evidence ?
S : -, . . (nucl-ex/0403005)
InA®  Ink? InQ Mono-jet
Edmond Iancu and Raju .
Venugopalan, hep-ph/0303204 Dilute parton (e
system |0 == P; is balanced
(deuteron) ° by many gluons
D.Kharzeev, E. Levin, L. McLerran gives
physics picture (hep-ph/0403271) , but no Dense gluon
quantitative predictions available (yet) field (Au)

— Exploratory studies of large rapidity interval particle correlations at STAR



Final Results for forward d+Au h* production from Brahms
I. Arsene et al. (Brahms Collaboration)

Rd+ﬁ'-.u

1.3

0.3

—_
T

submitted to PRL nucl-ex/0403005

n=10 B'h | n=1 h'th F n=22 Iy n=32 h
2 2
/{An‘“ Aok

- @ 0-20%/60-80%
F O 30-500/60-80%

BN TS TR TR
pr [GeVic] pr [GeVic] pr [GeVic] p [GeVic]
n=0 h*gh' n=1 h*gh' n=22 B F on=3.2 b
; !’g$+i g | |
B e e =
s 2 -
ol "o ﬂ}{}ii*ﬁii PSS

Suppression of inclusive hadron production at forward
rapidities of d+Au relative to p+p observed at BRAHMS...

What about back-to-back correlations?

26



-

Coincidence Probability (radian

7 + h

<N = 4.0, Il < 0.75

p + p (PYTHIA)

- = 9.3+0.3%
i B = 45.8+0.3 %
— 0, =0.97x£0.02

- 5 =15x087%
E=4435310.8
- 05 = 0.9910.04

d + Au (HIWING)

- =84X0.57%
B = 73505 7%
— 0= 0.821£0.04

- 5 =1411£1.17%
B=71.8x1.37%
- 05 = 0.8210.06

correlations, vs = 200 GeV

*

-

Expectation from HIJING
(PYTHIA-+nuclear effects)

X.N.Wang and M Gyulassy, PR D44(1991) 3501

GeV /e

with detector effects

* HIJING predicts
clear correlation in
d+Au

 Small difference in
“S” and “o,” between
p+p and d+Au

* “B” is bigger in
d+Au due to
increased particle
multiplicity at
midrapidity
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N Large rapidity gap n%+h?*
7w + h™ correlations, vs = 200 Gey  correlation data...

AR <121 = 4.0, In,] <0.75

pP+p
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— 05 = 1.13x0.07

-
N

i

Coincidence Probability (radian™)

0.2

0.1
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S =2£1.1% Py
| B=288.1+1.6%
— g, = 0.5440.27
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0.1
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Pr — Picp  Statistical errors only

- are suppressed in
d+Au relative to p+p at
small <x> and <py >

S pp-Saru= (9.0 £ 1.5) %

Consistent with
CGC picture

Q) /A

Non-linear

Parton Gas
Fixed n, as

E & p; grows

BFKL

To0) [

InA” Ink?

e are consistent in
d+Au and p+p at
larger <x> and <p, >

as expected by HIJING



Conclusions

* Forward hadron production at hadron-hadron collider selects
high-x (thus high polarization) quark + low-x gluon scatterings

* Forward nt’ meson production at RHIC energies is consistent
with partonic scattering calculations, unlike at lower Vs

* Inclusive cross section is consistent with NLO pQCD
calculations and PYTHIA(LO pQCD + parton showers)

* Large rapidity interval correlations in p+p agree with
PYTHIA prediction

* Analyzing power for forward ©t° mesons is large at RHIC

* Large rapidity interval correlations in d+Au differ from p-+p in
a direction consistent with CGC picture. More data with d+Au
(and quantitative theoretical understanding) is required to make

definitive physics conclusions.
L.C. Bland, Hard Probes 29



Near-Term Future Plans

reconstruction of
HIJING + GEANT simulations

Cu+Cu, ve=200 GeV, HIJING/GSTAR, <n>=3.3
Centrality averoged, E> 25 GeV

as E
Simulations suggest that forward :

detection is feasible in centrality- 3 J_L
averaged Cu+Cu collisions at ®F

Vs=200 GeV. In addition to 50 |
establishing R ¢, at large 25 |

rapidity, the FPD can trigger full o b L]
STAR readout to examine :

15 |

particle correlations with large-

rapidity m°. This can be useful to 3
study flavor dependence of recoil 5 F %
jets at midrapidity. o ..FLJL'—'_‘ﬁn
G 2.1 0.2 &3 o4 0.5
Reconstructed M, (Cev/c®)

L.C. Bland, Hard Probes 30



Limitations of the Existing FPD

Limited pseudo-rapidity
coverage at any one time
Strong n — x-— p;
acceptance correlations

Only suitable for n°

— Too small for direct photon
Isolation cuts

— Too small to contain
heavier meson decay
products

Limited solid angle for
correlation studies

A larger detector would
be extremely valuable

500

400

300

200

100

d+Au — no+n+X correlations

pT,l = 2.5 GeV PP

1.5 < pyp < 2.5 GeV x dAu, shad.1

25 <7, <35

T arbitr.

Logo(xz)
Guzey, Strikman, and Vogelsang,

hep-ph/0407201
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Detector Scaling:
Heavier Mesons with Larger Detectors

7Z'O « M=.135 GeV 2 photons
— 7x7 (3.8 cm) blocks
n + M=.548 GeV 2 photons
— 28 x 28 (3.8 cm) blocks
kshm « M=.498 GeV 4 photons
— 25 x 25 (3.8 cm) blocks
p,o,n ¢« M=7-1.0GeV 2-6 photons
— 50 x 50 (3.8 cm) blocks
DY * M=1.8 GeV 4-6 photons
— 90 x 90 (3.8 cm) blocks (Approximately Filling the forward
region)
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Forward Meson Spectrometer for STAR

~1500 Pb-glass crystals
with cell size:

3.8 cm 1nner Forward
Mesor
7.6 cm outer Spectrometer
rs g west
i i 1~ ) — magnet
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Forward Meson Spectrometer
Status

Required Pb-glass has been identified
Electronics design underway
Mechanical support appears straightforward

In addition to n®, have PYTHIA event simulation
and reconstruction for

— 1 (two photon decay)

— o (three photon decay)

— K (four photon decay)

Proposal to NSF in preparation
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STAR Forward Meson Spectrometer

Physics Program

* Origin of the transverse spin asymmetry
— Sivers: parton orbital motion?
— Collins: transversity?
— Twist-3 correlations?

* Gluon polarization at very low x
— A, for forward n° and forward jets
— A, for forward direct photons and y + jets
* Gluon density in heavy nuclei at very low x
— Identified meson and vy yields vs. x- and p;
— Correlations with identified mesons
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