Charm and beauty through electron

<u>measurements</u>

Alexandre A. P. Suaide Universidade de São Paulo STAR Collaboration

- The STAR detector
 What have we learned so far?
 Heavy quarks
 Results
- Perspectives

- RHIC has been exploring nuclear matter at extreme conditions over the last few years
 - 2000 first run (Au+Au @ 130 GeV/NN)
 - 2001 small Au+Au and p+p runs @ 200 GeV/NN
 - 2003 d+Au and polarized p+p runs @ 200 GeV/NN
 - 2004 large Au+Au run @ 200 GeV/NN and Au+Au run @ 62 GeV/NN

STAR The soft sector: the bulk of produced particles

- The matter produced show strong collective flow
- The relative yield of different particles is in relative good agreement with Thermal Model
 - T_{ch}~ 160-170 MeV
 - $\mu_{ch} \sim 25 \text{ MeV}$
- Mass and p_T dependence, as well eliptic flow are consistent with Hydro expectations for an ideal relativistic fluid
- Very high initial energy density
 - Aprox 30 times cold nuclear matter

$$\varepsilon_{BJ} = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy} \sim 4.5 - 5.0 \text{ GeV/fm}^3$$

Alexandre A. P. Suaide Universidade de São Paulo

' cold

STAR The high-p_T sector - sensitive to the initial stages of the system evolution

- Strong hadron suppression in central Au+Au collisions
 - Compared to p+p and peripheral events
 - Not seen in d+Au
 - Final state effect
- Magnitude of suppression indicates an initial gluon density much larger than normal nuclear matter
- Suppression of away side jets
 - Strong interactions with the matter produced
- A new physics at RHIC eral

- RHIC has produced matter that behaves differently from anything we had seen previously...
 - Is this the QGP?
 - Can we see the phase transition?
 - Lower energies, different system sizes?
- ... is dense (many times cold nuclear matter density)...
- ... is dissipative...
- ... exhibits strong collective behavior...
 - Does dissipation and collective behavior both occur at the partonic stage?
- ... and seems to be thermally equilibrated
 - Is it?

STAR What could heavy quarks give us?

- Heavy quark production
 - Charm produced in early stage, mostly from initial gluon fusion
 - Sensitive to early conditions:
 - initial gluon density
 - nuclear effects
 - medium effects
 - Are heavy-quarks mesons suppressed as well as light quarks ones?
 - Probe of energy loss mechanism
 - Thermalization probe?
 - Eliptic flow.

Alexandre A. P. Suaide Universidade de São Paulo

STAR Heavy quark suppression?

- Propagation of heavy quarks in QCD matter
 - Energy loss through gluon radiation
 - dead cone effect
 - Gluon radiation suppressed for θ < M/E (Dokshitzer & Kharzeev, PLB 519 (2001) 199)
 - Medium induced radiation reduces effect but still sizeable (Arnesto, Salgado, Wiedemann, hep-ph/0312106)
 - large enhancement of D/π ratio at moderate high p_T (5-10 GeV/c)

Alexandre A. P. Suaide Universidade de São Paulo

STAR Electrons: information from heavy quark production

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

- Misidentified hadrons
 - Obtained by shifting the TPC dE/dx selection over the hadrons region
- γ convertion and Dalitz decays
 - Di-electron mass reconstruction
 - High efficiency

Alexandre A. P. Suaide

Universidade de São Paulo

STAR Background subtracted electron spectra

- STAR has measured electrons up to p_T = 8 GeV/c
- EMC, ToF and dE/dX electrons agree within errors
- Systematic uncertainties
 - Trigger bias ~ $0.5\sigma_{sys}$
 - Efficiency ~ 0.2σ_{sys}
 - Other sources ~ $0.3\sigma_{sys}$

Alexandre A. P. Suaide Universidade de São Paulo

STAR Where these electrons come from?

- Are they from heavy-quark decay?
- Electrons calculated from D-mesons measurements indicate that a significant fraction are from charm
 - See Manuel Calderon's talk
- Pythia suggest that high-p_T electrons may have a significant contribution from beauty decays.

Alexandre A. P. Suaide Universidade de São Paulo

Measured D combined with measured electron spectra

 $\sigma_{c\bar{c}}^{NN} = 1.4 \pm 0.2(stat) \pm 0.4(sys) \text{ mb}$

Pythia and NLO pQCD calculations

Underpredicts cross-section by at least a factor of 3.

Ramona Vo	ogt	40 GeV	200 GeV	5.5 TeV	_	
hep-ph/020	$c\overline{c}$		\frown			
PDF	m_c (GeV)	μ/m_c	σ (µb)	σ (µb)	σ (mb)	
MRST HO	1.4	1	37.8	298	3.18	-
MRST HO	1.2	2	43.0	382	5.83	
CTEQ 5M	1.4	1	40.3	366	4.52	
CTEQ 5M	1.2	2	44.5	445	7.39	
GRV 98 HC	1.3	1	34.9	289	4.59	
		$h\overline{h}$	-			-

- Other processes like *flavor excitation*, *gluon splitting*, *parton showers* et al. are needed
- To understand Au+Au need to understand this first.

۲

Alexandre A. P. Suaide Universidade de São Paulo

Mat about beauty?

- Pythia simulations suggest that high- p_T electrons above 3.5 GeV/c are sensitive to beauty
- Obtaining beauty cross section
- UseTRysthile dowErsyTIMATE a limit on beauty approximations and
 - Interstrect they elaction yield systems action
 - = Only c-coargives too much crosseselstvery large
 - Use D-mesons as constrain current measurements
 - σ_{bbar} = 5.45 + 0.97^{stat} + 2.2^{sys} μb Huge uncertainties

Ramona Vogt hep-ph/0203151									
	PDF	m_b (GeV)	μ/m_b	σ (nb)	σ (µb)	σ(µb)			
-	MRST HO	4.75	1	9.82	1.90	185.2			
	MRST HO	4.5	2	8.73	1.72	193.2			
	MRST HO	5.0	0.5	10.96	2.16	184.8			
	GRV 98 HO	4.75	1	13.40	1.65	177.6			
	GRV 98 HO	4.5	2	12.10	1.64	199.0			
	GRV 98 HO	5.0	0.5	14.80	1.73	166.0			
-									

Alexandre A. P. Suaide Universidade de São Paulo

STAR Comparison between p+p, d+Au and Au+Au?

- d+Au collisions
 - R_{dAu} is compatible with binary collision scalling
 - Maybe a small Cronin enhacement
- Au+Au collisions
 - Too early to call
 - But it seems we have some modification
- Do we really understand quark energy loss?
 - Need to extend AuAu to higher p_{T}
 - STAR results will be available in the next few months

- Elliptic flow of D-Meson is a sensitive probe for thermalization
- How we measure (15). If cguarks flow, there must
- Electronoværnenutien collision @ 2006 Gevrions to easily
 - Does electron flow
 Imejorate serionoritationarks.
 reflect. D's flow?
 photonic electron v₂
 - consistent with v_{2c} = v_{2light}theory calculations
- Still a long way to go
 - Centrality dependence
 - Understand systematics
 - Improve statistics

Alexandre A. P. Suaide Universidade de São Paulo

- STAR has measured electrons from heavy-quark decays up to 8 GeV/c in p+p and d+Au collisions
 - Heavy-quark cross sections underestimated by pQCD calculations
 - R_{dAu} suggests Cronin enhancement in electrons but is consistent with $N_{\rm bin}$ scaling within present errors
 - There are indications of strong heavy-quark suppression in central Au+Au
 - Need to extend to higher p_{T} and minimize systematics
 - Do we understand heavy-quark energy loss (dead cone effect)?
- Preliminary results show non-zero $v_{\rm 2}$ for electrons from heavy-quark decays
 - Results are compatible with $v_{2c} = v_{2light-q}$ theoretical calculations
- It seems that there are strong interactions between heavyquarks and the medium created in RHIC.
 - Y2004 data will provide enough statistics to confirm these results.

- Not ready yet, but...
 - Phenix AA electrons / Npart
 - Electron id in detail

Electron spectra from many experiments

STAR

Alexandre A. P. Suaide Universidade de São Paulo

- TPC as a candidate selector
 - dE/dX for p > 1.5 GeV/c
 - Electrons can be discrimitated from hadrons up to 8 GeV/c
- EMC
 - Towers
 - p/E for electron and hadron candidates
 - p is the track momentum
 - E is the tower energy
 - Peak position depends on the
 - SMD (Shdisstan Max Dehecternt) er of the
 - · Showerweluster type
 - Type 3 = both SMD planes
 - Track-SMD cluster distance
 - Hadrons have a wider distribution
- e/h discrimination power ~ 10^{5}
 - TPC ~ 500
 - EMC ~ 250

- Remaining hadronic contamination (hadrons misidentified as electrons)
 - Obtained by selecting hadrons using TPC dE/dX
 - Larger for primary electrons

- Reconstruction efficiency
 - From embeddig simulated electrons into real events
 - Aprox. 50% for $p_T > 2 \text{ GeV/c}$

STAR High-p_T electron trigger

- * EMC provides a Level 0 high- p_{T} electron trigger
 - Runs for every RHIC crossing (10 MHz)
 - Two E_T thresholds
 - \cdot 2.5 and 5 GeV
 - Enhancement as high as 1000 for $p_T > 5$ GeV/c
 - Trigger bias
 - Suficient overlap between the minimum bias and the EMC triggered data

STAR Hidden (Quarkonium) and Open Charm?

•NA38/NA50: measurement of J/Ψ, Ψ' suppression at CERN/SPS:
•Suppression with respect to

- continuum (Drell-Yan)
 - Low statistics
- N_{bin}/N_{part} from Glauber
 - Model dependent
 - Fluctuations!

•RHIC: Continuum dominated by open charm

•also: Statistical models: relative chemical equilibrium between open charm and J/Ψ ?

Open charm production provides a good reference and may be the only mean to understand charmonium suppression (same gluon conditions in the initial stage)

Alexandre A. P. Suaide Universidade de São Paulo