Semihard scattering unraveled from collective dynamics at the SPS

Jana Bielcikova (Yale University) for the CERES Collaboration

- Motivation
- CERES experiment
- Elliptic flow vs two-pion azimuthal correlations
- Semihard interpretation and properties of non-flow component
- Summary

How to unravel semihard processes from collective dynamics ?

Use two-particle azimuthal correlations at high-p_t ! They are sensitive to flow and (semi)hard particle-particle correlations.

 correlation of particles with event plane (EP) induces correlations between particles

$$\frac{dN}{d(\phi_i - \phi_j)} = B(1 + \sum_{n=1}^{\infty} 2(v_n^2) \cos(n(\phi_i - \phi_j)))$$

direct correlations:
 v_n(correlation) ≠ v_n(EP)

CERES spectrometer

Detectors:

- SDD1,SDD2: vertex, centrality, event plane
- RICH1,RICH2: PID
- MWPC: tracking
- magnetic field: azimuthally symmetric
- charged hadrons: vertex+SDD+MWPC no PID (statistical)
- high-p_t pions: identified by RICH γ_{th}~32
 p>4.5 GeV/c

Jana Bielcikova (Yale)

1996 setup (before TPC upgrade)

Acceptance: 2.1 < η < 2.6 full azimuth

Identification of high-p+ pions in RICH

 $\gamma_{th} \sim 32 \implies p_{min} > 4.5 \ GeV/c$ $\pi \ distinguished \ from \ e \ by$ $smaller \ ring \ radius$ Jana Bielcikova (Yale) Hard Probes 2004

Data analysis

- 41M of Pb+Au collisions (\sqrt{s} =17GeV) \odot
- centrality determined from N_{ch} in SDD
- Glauber model to calculate N_{part} and N_{coll}

Pion analysis: p_t>1.2 GeV/c: N(pions/event) ~ 2x10⁻² N(pion pairs/event) ~ 4x10⁻⁴

reconstruction efficiency ϵ : from overlay Monte-Carlo 3-dim ϵ =f(p,N_{ch}, θ) (ϵ =0.1-0.4) \otimes

Jana Bielcikova (Yale)

Centrality dependence of v_2

• hydrodynamical calculation: P. Huovinen (T_f=120/160MeV)

• better agreement for T_f =160MeV but proton spectra are too steep

Transverse momentum dependence of v_2

- non-ideal liquid at SPS ? viscosity needed (D. Teaney, E. Shuryak: nucl-th/0204023, nucl-th/0301099)
- STAR PRL 90, 032301 (2003)
- v₂ flattens at p_t~1.5 GeV/c
 v₂(SPS) ~ 2/3 v₂(RHIC)

Jana Bielcikova (Yale)

Two-pion azimuthal correlations

- Δφ ~ 0 region strongly affected by two-track resolution (RICH)
 -> Monte-Carlo (MC) correction
- reject tracks close in polar angle (Δθ < 20 mrad) and apply MC correction of efficiency loss

- v_2 from π - π correlation is systematically higher than v_2 from EP analysis
- this difference grows with p_t
- non-flow component is present !

Jana Bielcikova (Yale)

Semihard interpretation of non-flow component

Peaks have different widths:

near-side: σ_0 =(0.27±0.05) rad fragmentation ?

away-side: σ_{π} =(0.55±0.17) rad in-medium re-scattering?

Jana Bielcikova (Yale)

Near-side and away-side peaks: centrality dependence of Gaussian widths

Jana Bielcikova (Yale)

Near-side and away-side peaks: p₊ dependence of Gaussian width

 σ(p_t) of away-side peak decreases with increasing p_t(trigger)

statistical errors large ⊗

• $\sigma(p_t)$ of near-side peak under study (Monte-Carlo correction of $\Delta \phi \approx 0$ region vs p_t needed)

Near-side and away-side peaks: centrality dependence of semihard yield

- π-π yield is defined as area under a Gaussian peak
- consistent with binary scaling
- away-side peak disappears in central collisions as at RHIC

STAR: PRL90 082302 (2003)

no 'jet-quenching'

Are semihard pion pairs correlated with event plane ?

fix one pion in the in plane (out of plane) cone and look at the correlation

- condition that particle is out-of-plane shifts flow pattern by $\pi/2$
- influence of the EP resolution has to be accounted for (dashed)

J.Bielcikova, S.Esumi, K.Filimonov, S.Voloshin, J.P.Wurm, PRC69, 021901(2004)

Jana Bielcikova (Yale)

Observed in-plane and out-of-plane azimuthal correlations

dashed line: expectation from elliptic flow

- data lie above the flow reference
- yield in/out-of-plane: near-side peak: 1.32±0.37 (stat.)

away-side peak: 1.39±0.44 (stat.)

syst. error estimate 15%

 weak preference to event plane orientation

Summary

We observe semihard two-particle correlations of charged pions embedded in elliptic flow at the SPS.

Elliptic flow:

- flattens at p_t>1.5 GeV/c (similar to RHIC)
- ideal hydro does not fully describe the data -> non-ideal fluid at the SPS (viscosity needed)?

Two-particle correlations:

- yield of pion pairs grows with N_{coll}
- away-side peak: centrality dependent broadening $\sigma(p_t)$ decreases with p_t
- near-side peak: $\sigma(N_{coll})$ is constant (fragmentation ?)
- both components show a weak preference to the event plane orientation