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Saturation-Unitarity (1/3)

The wavefunction of a generic fast moving hadron
described by the “Gluon occupation factor” ≡
# of gluons/transverse phase space/rapidity/color/spin

ϕH =
(2π)3

2(N2
c − 1)

dN

dY d2b⊥ d2k⊥

ϕH ∼ 1/αs : maximal density allowed by mutual interactions 
Gluons (effectively) overlap in phase space saturate
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Saturation-Unitarity (2/3)

A strong field A associated with the hadronic wavefunction
Assumes maximal value 1/g at saturation

A ∼
√

a†a ∼ √
ϕH ∼ 1/g

Scattering amplitudes are of order O(1)

For example in dipole-hadron scattering

Nxy = 1 − Sxy = 1 − 1

Nc

〈

tr
(

V †
x Vy

)〉

V †
x = P exp

[

ig

∫ ∞

−∞

dx−A+(x−, x⊥)

]

Note : Average 〈· · ·〉 over possible configurations of color sources
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Saturation-Unitarity (3/3)

Under what circumstances saturation and unitarity limits are reached, and
strong color fields are created?

In a large nucleus with A ≫ 1:
There are A × Nc valence quarks
 large number of radiated gluons

At small Bjorken-x ↔ very high energy:
Successive gluon emissions - Resum ladder diagrams
 high density gluonic system
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The Color Glass Condensate

Fast moving partons with momentum p+ → Large lifetime
∆x+ ∼ 1/p− = 2p+/p2

⊥

“Frozen” sources for slow moving gluons with momenta k+ ≪ p+

Solve Classical Yang-Mills equation A(ρ) for given source ρ

(DνF νµ)a (x) = δµ+ρa(x) Non − linear

Calculate observable O(A) = O(ρ)

〈O[ρ]〉Y =

∫

Dρ WY [ρ]O[ρ]

WY [ρ] = probability distribution of color sources at rapidity Y
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The McLerran-Venugopalan (MV) Model

Color sources : The A × Nc valence quarks in a nucleus

Uncorrelated for transverse separations ∆x⊥ . 1/ΛQCD

 Gaussian weight-function

WMV ∝ exp

[

−1

2

∫ 1/Λ

d2x⊥

ρa(x⊥)ρa(x⊥)

µ2
A

]

µ2
A = 2αsA/R2

A ∼ A1/3Λ2 = color charge squared/transverse area

Classical model : Weight function does not depend on rapidity

Could be realized in providing initial conditions
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The JIMWLK Equation (RGE)

Increase rapidity More gluons included in the source

Resum ᾱsY terms in presence of a strong color field

Weight function depends on Y , satisfies the RGE

∂

∂Y
WY [ρ] =

1

2

δ

δρa
Y (x⊥)

χab(x⊥, y⊥)[ρ]
δ

δρb
Y (y⊥)

WY [ρ]

“Observables” satisfy non-linear evolution equations, e.g.

∂

∂Y

〈

tr
(

V †
x Vy

)〉

Y
= ᾱs

∫

d2z⊥
2π

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

×
〈

1

Nc
tr
(

V †
x Vz

)

tr
(

V †
z Vy

)

− tr
(

V †
x Vy

)

〉

Y

Reduces to BFKL Equation in weak field, low density, limit
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The Saturation Momentum (1/2)

For given Y , modes with k⊥ . Qs(Y ) will be saturated

DGLAP

B
F

K
L

Y

ρ = ln(k2
⊥/µ2)

Sa
tu
ra
ti
on
 L
in
e

ϕ = const
∼ O(1/αs)Color

Glass

Condensate
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The Saturation Momentum (2/2)

Energy dependence of saturation scale
Determined by linear dynamics with appropriate boundary conditions
Leading asymptotic behavior

Fixed Coupling : Q2
s(Y ) = #Q2

s(0) exp

[

χ(γs)

γs
ᾱsY

]

Running Coupling : Q2
s(Y ) = #Λ2 exp

[

√

2χ(γs)

bγs
Y + ln2 Q2

s(0)

Λ2

]

χ(γ) = Eigenvalue of BFKL equation

1/2 < γs ≃ 0.628 < 1 associated anomalous dimension

Large Y ⇒ Q2
s(Y ) ≫ Λ2 → weak coupling techniques justified
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Classical Saturation (1/3)

MV model: High color charge density Non-linear effects
The saturation scale is set by the density

Q2
s(A) ≈ Λ2A1/3(× lnA1/3) ≫ Λ2

The gluon occupation factor reads

ϕA(k⊥) =
1

αs
Γ(0, z) + ϕtwist

A (z), z ≡ k2
⊥/Q2

s(A)

Parametrically enhanced term ∼ 1/αs dominates for all z . 1

Gluon occupation factor in the CGC phase : ϕsat
A (z)

Compact distribution : Falls exponentially at large z

Diverges only logarithmically at z ≪ 1

Twist term is relevant only for high momentum tail
Contains bremsstrahlung spectrum ϕBS ∝ 1/z
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Classical Saturation (2/3)

0.01 0.1 1
z
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ϕA

Black (thick) line : Gluon occupation factor ϕA(z)

Blue (solid) line : Saturation contribution ϕsat

A
(z)

Green (dashed) line: Bremsstrahlung spectrum ϕBS(z)
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Classical Saturation (3/3)

In MV model color sources are uncorrelated Sum-rule

∫ Z

dz [ϕA(z) − ϕBS(z)] −−−−→
Z→∞

0

“Summing” nucleons Integrated gluon distribution for Q2 ≫ Q2
s(A)

Repulsive interactions redistribute gluons in momenta:
Two spectra are equal at a scale Q2

c(A)

Λ2 ≪ Q2
c(A) ≈ αsQ

2
s(A) ≪ Q2

s(A)

Gluons in excess in bremsstrahlung spectrum at k⊥ . Qc(A)

 Gluons located at k⊥ ∼ Qs(A) in MV spectrum

The MV spectrum is enhanced around the saturation scale
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The Cronin Effect (1/2)

As an immediate consequence, consider the ratio

RpA ≡ ϕA

A1/3ϕp
=

ϕA

ϕBS
= z ϕA

Behaves as

RpA ≪ 1 if z ≪ 1

RpA ∼ O(1/αs) ≫ 1 if z ∼ 1

RpA → 1+ if z ≫ 1

Maximum: z0 = 0.435 + O(αs), Rmax = 0.281/αs + O(const)

Compact CGC distribution “Pronounced” peak

Maximal value increases with A (since 1/αs = lnQ2
s(A)/Λ2)
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The Cronin Effect (2/2)
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RpA(z) = Rsat
pA(αs, z) + Rtwist

pA (z)
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Quantum Saturation (1/2)

Start to add small-x gluons Evolve in rapidity Y

Correlations among color sources are induced

General solution is not known; only in certain regions

ϕ(k⊥, Y ) =







































1

αs
ln

Q2
s(Y )

k2
⊥

if k2
⊥ ≪ Q2

s(Y )

1

αs

(

Q2
s(Y )

k2
⊥

)γs
(

ln
k2
⊥

Q2
s(Y )

+ ∆

)

if k2
⊥ & Q2

s(Y )

Q2
0

k2
⊥

I0

(

√

4ᾱsY ln
k2
⊥

Q2
0

)

if k2
⊥ ≫ Q2

s(Y )

Scaling around saturation momentum
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Quantum Saturation (2/2)

Can do first (nonlinear) step in evolution, valid for Y ≪ 1/αs

ϕA(k⊥, Y ) =
1

αs
Γ(0, z) + ϕtwist

A (z) + Y ∆[Γ(0, z)]

Evolution of compact piece contains power-law tails
Generated from evolution kernel

Extrapolate: When Y & 1/αs all components are “mixed”
and unlike classical model

 NO compact distribution for k2
⊥ . Q2

s(Y )

 NO parametric separation between solutions below and above
saturation line
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The Cronin Ratio (1/4)

Various kinematical regimes not trivial study. Basic features are

Proton is “less saturated” than nucleus 
More transverse space for proton evolves faster
e.g. evolving along k2

⊥ = Q2
s(A, Y )

dRpA/dY < 0 & RpA −−−−→
Y →∞

(αsA
−1/3)1−γs

High pT suppression

Fixed Y , and extremely high momenta
dRpA/dk2 > 0 for k2 ≫ Q2

s(A, Y ) & RpA −−−−→
k2→∞

1−
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The Cronin-Ratio (2/4)

Sum-rule breaks down due to correlations. Peak still exists

Maximum is 1, when ϕp = 1/(αsA
1/3) ≪ 1 is still a “dilute system”

Evolution is DGLAP-like. Indeed

Rmax
pA = O(1) when Y ≃ 1

4
ln2(1/αs) ≪ 1/αs

suppression is very fast

For large Y , due to nuclear evolution, the peak flattens out
dRpA/dk2

⊥ > 0 when Y & 1/αs
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The Cronin Ratio (3/4)
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z
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Cronin ratio for z . 1. Top to bottom : ∆Y = 0, 1/2, 1, 3/2, 2

Black (solid) lines : Evolved nuclear wavefunction

Red (dotted) lines : Unevolved one (MV)

Proton wavefunction : Full DLA solution
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The Cronin Ratio (4/4)
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Cronin ratio for z&1. Top to bottom : αs∆Y =0.75+0.3 n, n=0,1,2,3,4
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BRAHMS Data
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Gold Nucleus is probed at the x-value

xAu ∼ 2pT√
sNN

exp[−η]
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Conclusion

Differences between classical (MV) and quantum saturation

Different picture of the Cronin ratio at Y = 0 and Y 6= 0

Extended previous discussions

Explained results obtained from numerical solutions
(+ Running coupling analysis : Not much different)

“Rough” qualitative agreement with RHIC Data
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