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The Relativistic Heavy Ion Collider at BNL



Gold Ion Collisions in RHIC Beam Energy = 100 GeV/u
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RHIC First Commissioned, June 2000
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2000-2004 RHIC PERFORMANCE

Phenix 1370 ub!
Star 1270 ub!
Phobos 560 ub!
_ Brahms 540 ub-!
+ e PHENIX
~STAR
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Weeks into the run {to 03/24/04)

RHIC Run Colliding System \/SNN
AutAu 55.87GeV
1 AutAu 130.4GeV
Aut+Au 130.4GeV
Aut+Au 200.0GeV
2 AutAu 19.59GeV
ptp 200.0GeV
d+Au 200.7GeV
3 ptp 200.0GeV
AutAu 200.0GeV
4 AutAu 62.40GeV
ptp 200.0GeV




THE DETECTORS



The Two Large Detectors

STAR

Solenoidal field, large-€2 tracking
TPC’s, Si-vertex tracking

RICH, TOF, large EM Cal
~420 participants
Silicon Vertex
Coils Magnet Tracker

Calorimeter

B Time Projection
Chamber

A —Time Of
b a.  Flight

Electronics
Platforms

Forward Time Projection Chamber

PHENIX

Axial field, high resolution & rates
2 central arms, 2 forward muon arms
TEC, RICH, EM Cal, Si, TOF, u-ID
~450 participants




The Two Small Detectors

BRAHMS PHOBOS
2 “conventional” spectrometers “Table-top” 2-arm spectrometer
Multiplicity detector full phase space multiplicity measurement
with large phase space coverage Magnet, Si pad detectors, TOF+dE/dx
Magnets, TPCs, TOF, RICH ~70 participants
~40 participants
o D4 T0 counter 137000 Silicon Pad Channels

Forward Spectrometer
2.3<0<30 \
Time of Flight
I > < g
T % )
Paddle Trigger Counter
-
Multiplicity Calorimeters | .-

Beam Beam counters

Octagon

Spectrometer NIM A 499, 603-623 (2003)




AR High Multiplicity Au+Au Collision at
Vs =130 GeV

colors ~ momentum: low - = = high
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Measured Quantities

Single Particles

Tracking — ; p
. . dE "
time of flight, - — mass
X

Event Characteristics
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part

Forward Neutral Energy

“spectators”



Experimental Control of Centrality or Impact
Parameter

“Spectators”
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A1m of Research:

~150
MeV

EXPLORING the PHASES of QCD

Critical
Point

Relativistic
Heavy Ion
. Collisions

Quark—Gluon Plasma

Universe
Color
Hadron Gas Superconductor
CFL
v LY
N
hN Neutron | Stars?
™ J 'J'baryon
“Vacuum Nuclei— Crystalline

Color Superconductor

Bi-product: Study of Mechanism of Particle Production

See, for example, W. Busza arXiv: nucl-ex/0410035



Too good to be true!
SIGNATURES
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From Harris and Mueller
Ann. Rev. Nucl. Sci. 1996



But RHIC program 1s an incredible success

BRAHMS, Phenix, Phobos & STAR “White Papers™:
“Perspectives on Discoveries at RHIC”

To be submitted to NPA November, 2004
BRAHMS arXiv: nucl-ex/0410020

Phenix arXiv: nucl-ex/0410003

Phobos arXiv: nucl-ex/0410022

RIKEN BNL Workshop May 14-15, 2004

Submitted to NPA 2004

New Discoveries at RHIC
A RIKEN BNL Research Center Workshop, May 14-15, 2004
Proceedings, Volume 62, BNL-72391-2004



Where Are We Now?

In Au + Au Collisions at RHIC

1. In £ 1 fm/c energy density>3GeV/fm?

2. Description of the created system 1n terms of simple
hadronic degrees of freedom 1s inappropriate

3. Constituents of this novel system are found to
interact very strongly

In addition large body of high quality data has been
collected on a broad range of topics. Much of 1t 1s

not well understood.

Phenomenology 1s often simpler than the interpretations.



Global Properties

Data smooth as a function of energy
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Elliptic Flow
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Data smooth as a function of centrality or impact parameter
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Measured / Expected J/y suppression
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Although 1in the RHIC Energy Range (20-200 GeV)
there are no obvious discontinuities, with very
reasonable assumptions we can conclude

Time of equilibration is short <1 fim/c
Energy Density is very high, >3 Ge V/ fm’

Note: Cold Nuclear Matter Density ~ ISOMeV/ fin’
Energy Density Inside Hadrons ~ 500 Me v/ fn?



Not only is the energy density very high, the
matter 1s strongly interacting at early times

Evidence:

Strong Flow Signal



Analogy: Elliptic Flow of Ultracold Li, Atoms

T~ 5010°K
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Elliptic Flow a very real phenomenon!

1000 pus

K.M.O’Hara et al, Science, 298 (2179) 2002



Elliptic Flow at RHIC

Asymmetry + interactions creates
final state azimuthal correlations:

97l .
: elliptic flow
: (Plab_\llplane
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Large v, - strongly interacting matter at early time
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gqq Coalescence pQCD Jets :

From Gyulassy DNP 2004



What is the novel medium?
What 1s the origin of its strong interactions?

To answer these questions one needs localized
penetrating probes

Such probes do exist — main topic of this meeting

parton (quark or gluon)

parton (quark or gluon)




HARD PROBES



q+tg 2 q+g

For parton-parton scattering
with high Pt

The basic interaction is

pQCD understood — pQCD
(Nobel Prize 2004)

[f parton beams of known momentum where available and
scattered partons could be directly detected, life would be
beautiful!



Fragmentation :

Z =

p hadron

p jet

Z

qgtg 2jet+ X

R
*
“
* *
. o*
.
.
.
.
*
*

The best we can hope to do 1s
to look at jets or jet
fragments. This 1s reasonably
well understood (combination
of calculation and
phenomenology, eg ete-
annihilation)



ptp >0+ X

More phenomenology

«leading” ¢ needed but under control:
1
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Aut+Au 2 '+ X

“leading” 9

More complications:

Multiple interactions and radiation before high
Pt scattering (e.g.Cronin effect),

Shadowing
Saturation (e.g. Color Glass Condensate)
Appropriate normalization?

Effect of medium on fragmentation?

pA &dA helps to sort out initial state and final state effects

: :




Correct Normalization, 1.e. What 1s the Number of

Relevant Collisions for Colliding Nucle1?
3 b

....
L J
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Numbe
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Impact parameter, b (fm)
Numbers obtained from Glauber model: 5~
Straight trajectories 28 6
Constant cross-section 285 [
. Q G i i
Nuclear density profile S €4
s 8 Z
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Appropr.late cross-section z o = 36mb - oy = 62.4 GeV
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All of above are Pt dependent Number of participants (N, )



Some vocabulary:

Nuclear Modification Factors

o' d*Naa/dprdn

Raa =
<NCOH> dggpp/dedn
pNoart _ o d?Nya [dprdn
A4 (Npart/2) d?oypp/dprdn
Rheert = (Npart *) _d*Naa/dprdn

( part) dQNU 6%/dp{rdn



EXAMPLES OF DATA



_ 2T p N, ] d N /dp dy (GeVic)

“Jet quenching” or Suppression of High P Particles
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AuAu and dAu comparison (N_ ;, normalization):
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Back-to-back jets:
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* Au+Au Central
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i o d+Au FTPC-Au 0-20%

Shr

STAR: Phys.Rev.Lett.91:072304, 2003

A ¢ (radians)



Correlation of suppression with reaction plane:
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THERE ARE ISSUES ONE SHOULD BE AWARE
OF WHILE LISTENING TO THE TALKS

 Different particles may behave differently. Looking at the
behavior of all charged particles together may be misleading.

 Theorists may be pushing their luck using a high Pt approximation to
a regime where 1t 1s clearly not applicable.

* Most data are for single particles and yet one speaks of them as 1f
they are scattered partons or jets

e [nappropriate or unknown normalization can enhance or suppress an
effect

 Important to ask 1f a “high Pt effect” 1s not there at low Pt

*[s there evidence that jet quenching goes approximately like density
times the square of path length?



Suppression depends on produced particle type:
STAR Preliminary (Au+Au @ 200 GeV)
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THERE ARE ISSUES ONE SHOULD BE AWARE
OF WHILE LISTENING TO THE TALKS

* Different particles may behave differently. Looking at the behavior
of all charged particles together may be misleading

* Theorists may be pushing their luck using a high Pt
approximation to a regime where it is clearly not applicable

* Most data are for single particles and yet one speaks of them as 1f
they are scattered partons or jets

e [nappropriate or unknown normalization can enhance or suppress an
effect

 Important to ask 1f a “high Pt effect” 1s not there at low Pt

*[s there evidence that jet quenching goes approximately like density
times the square of path length?
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THERE ARE ISSUES ONE SHOULD BE AWARE
OF WHILE LISTENING TO THE TALKS

* Different particles may behave differently. Looking at the behavior
of all charged particles together may be misleading

 Theorists may be pushing their luck using a high Pt approximation to
a regime where 1t 1s clearly not applicable

* Most data are for single particles and yet one speaks of them as 1f
they are scattered partons or jets

* Inappropriate or unknown normalization can enhance or
suppress an effect

 Important to ask 1f a “high Pt effect” 1s not there at low Pt

*[s there evidence that jet quenching goes approximately like density
times the square of path length?
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Trends seen 1n “suppression” or “nuclear
modification” depend on normalization
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THERE ARE ISSUES ONE SHOULD BE AWARE
OF WHILE LISTENING TO THE TALKS

* Different particles may behave differently. Looking at the behavior
of all charged particles together may be misleading

 Theorists may be pushing their luck using a high Pt approximation to
a regime where 1t 1s clearly not applicable

* Most data are for single particles and yet one speaks of them as 1f
they are scattered partons or jets

e [nappropriate or unknown normalization can enhance or suppress an
effect

* Important to ask if a “high Pt effect” is not there at low Pt

*[s there evidence that jet quenching goes approximately like density
times the square of path length?



“Quenching” 1s seen 1n production of all particles in
the very forward region of rapidity (< 2 units)
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THERE ARE ISSUES ONE SHOULD BE AWARE
OF WHILE LISTENING TO THE TALKS

* Different particles may behave differently. Looking at the behavior
of all charged particles together may be misleading

 Theorists may be pushing their luck using a high Pt approximation to
a regime where 1t 1s clearly not applicable

* Most data are for single particles and yet one speaks of them as 1f
they are scattered partons or jets

e [nappropriate or unknown normalization can enhance or suppress an
effect

 Important to ask 1f a “high Pt effect” 1s not there at low Pt

*Is there evidence that jet quenching goes approximately like
density times the square of path length?



Last Words

LISTEN WITH SOME SKEPTICISM
ENJOY THE MEETING
IT IS AN EXCITING ERA FOR THE FIELD



