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The Fundamental Problems of Physics

constituents forces
quarks strong
leptons e-m
gluons, photons weak
vector bosons (Z, W¥) gravitation
Higgs unification, TOE

elementary interactions

Y

complex systems, critical behaviour

states of matter transitions
solid, liquid, gas thermal phase transitions
glass, gelatine percolation transitions
insulator, conductor scaling and renormalization
superconductor, ferromagnet critical exponents

fluid, superfluid universality classes



Complex Systems = New Direction in Physics

e Given constituents and dynamics of elementary systems, what
is the behaviour of complex systems?

e What are the possible states of matter and how can they be
specified?

e How do transitions from one state of matter to another occur?

e Is there a general pattern of critical phenomena, independent of
specific dynamics?
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1. The Physics of Complex Systems

1.1 Critical Behaviour in Thermodynamics

Phase transitions are common everyday occurrences

ice +» water < steam,
melting of metals, magnetization of iron,

insulator < conductor, ...

But:

they are difficult to treat, because one cannot reduce a complex
system to a sum of elementary systems;

therefore new methods of analysis are needed

basic feature of critical phenomena:

discontinuous or singular behaviour of observables




examples: water — steam magnetization
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Ising model

d-dimensional lattice grid, N? sites with spins s; = +1 Vi =1, ...

uniform next neighbor interaction —Js;s;
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properties of the system are determined by the partition function

exp —0H

-

Z(T,H=0,N) = Hij\idl Ys.=t1 €XPq ﬁJ%sisj — BH Y s}
i,J i
temperature T = 37!, external field H; take H =0

Z(T, H=0; N) has global symmetry (Z;):

S; — —S; Vi:1,...,Nd

leaves sum over all states Z (7, H=0; N) invariant

for high temperatures, system agrees:
on the average, d disorder, as many spins 1 as |

but below a certain temperature:
J order = spontaneous symmetry breaking

on the average, more 1 or more |

Zs invariance of Z(T, H=0; N): 1 and | equally likely
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need additional measure to specify state of system: order parameter

m(T,N) = H >

Z(T,N) =15

1 [ZZ i

expq BJ Y siS;i}
Z’j

under reflection s; - —s; Vi=1,...., N m(T,N) = —m(T, N)

order parameter is not invariant; consequence

# (0  for ordered state, broken symmetry

m(T)
= (0  for disordered state, symmetry
thermodynamic limit N — oo: m
m(T, H = 0) is not analytic (“smooth”) 1
(T-T)° >0 VT<T,
m(T) ~
0 VT>T,
T T

= critical exponent




also other observables show singular behaviour:

free energy F(T,H)=

temperature measure
external field measure

specific heat

O F .
Cy ,TQ(azﬂ) ~ |t

spontaneous magnetization

m(t,h =0) = I(MU ~ |t|”
H_

susceptibility

—Tlog Z(T, H)
t=(T —T)/T.
h=H/T



besides global also local observables diverge:

correlation function I'(r,t) ~ (s;s;.,) ~ exp —r/&

correlation length diverges

{1

t # 0: correlation length finite, dimensional scale, given spin does
not see far-away other spins

t = 0: correlation length diverges, no scale, all spins are correlated,
the system cannot be split into independent subsystems

requires new physics: infinite correlated system

= scaling and renormalization

But: why is there singular behaviour?

transition ~ onset of spontaneous symmetry breaking: “either-or”,

nothing gradual or smooth; you cannot break symmetry “a little”.
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rescale distances, temperature, external field

r—r =br, t—t =0 h—h=0blh
all physics must remain the same

= all critical exponents given in terms of y;, vy,
= critical behaviour fully specified by ;. y;

= 1, Y, define universality class

= Thermodynamic Critical Behaviour* <

e onset of spontaneous symmetry breaking
e singular behaviour of thermodynamic observables

e critical exponents, universality class

% continous transitions
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1.2 Cluster Formation and Percolation

thermal transitions, critical behaviour: dynamics (), symmetry

for constituents with intrinsic scale,
J simpler, geometric form of critical behaviour:

= formation of infinite connected clusters or networks

example: 2-d disk percolation (lilies on a pond)

isolated disks clusters percolation
(network)

distribute small disks of area a = 7r? randomly on large area F = L2,
L > r, with overlap allowed: when can an ant walk across?
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for N disks, disk density n = N/F =

average cluster size S(n) increases A
with increasing density n

suddenly, for n — n., S(n) becomes
large enough to span the pond: S ~ F

for N — 00, A — oo

S(n.) and (dS(n)/dn),—,, diverge: = percolation

percolation as geometric critical behaviour:
large size limit ~ thermodynamic limit

2 d (disks): n. ~ 1.13/m r?, 0.68 of space covered, 0.32 empty
when an ant can cross, a ship cannot, and vice versa: 2d effect

3 d (spheres): n.~ 0.34/(47/3)r3, 0.29 of space covered, 0.71 empty
both cluster and empty space connected
n. ~ 1.24/(47/3) r3, 0.71 of space covered, 0.29 empty
connected vacuum disappears
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probability P(n) that a given disk is in the infinite cluster

=0 Vn<n,
P(n)

~ (n—mn.)" for n — n, from above

= order parameter for percolation

measure average cluster size (excluding infinite cluster)

S(n) ~ |n —mn.|

~ susceptibility in thermodynamic system

. other observables: again singular behaviour

— critical exponents, universality classes

NB: here random distribution of disks/spheres

but distribution law not essential — can also use thermodynamic or
any other form of distribution
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again many everyday examples:

make pudding, boil an egg: gelatinization

conductivity in random networks, ‘ant in a labyrinth’

start a forest fire, find an oil field, ...
instead of symmetry breaking:

disconnected — connected system

= Geometric Critical Behaviour <

e onset of infinite cluster formation
e singular behaviour of geometric observables

e critical exponents, universality class

Again, why singular behaviour?

onset of connection is “either-or”, you cannot connect “a little”.
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thermodynamic vs. geometric critical behaviour?

thermodynamic transitions:
e 1 interaction dynamics for constituents
e equal a priori phase space probabilities

e state of system can spontaneously break symmetry of partition
function

e — non-analytic partition function

geometric transitions:
e 1 interaction range, size for constituents
e arbitrary distribution of constituents
e cluster formation, connection
e spontaneous onset of global connection, divergence of cluster

size: percolation

in both cases, singular behaviour
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2. Critical Behaviour in Statistical QCD

2.1 Phases of Strongly Interacting Matter

What happens to strongly interacting matter at
high temperature and/or density?

e hadrons have intrinsic size r, ~ 1 fm, need V, ~ (47/3)r} to exist

= limiting density of hadronic matter
n.=1/Vy, ~ 1.5 ng

e resonances — exponential hadron spectrum p(m) ~ exp(bm)

— statistical bootstrap model

— dual resonance model

= limiting temperature of hadronic matter

T, =1/b~ 150 — 200 MeV
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= what lies beyond n., 1.7 <

e quark liberation

hadronic matter: colorless constituents of hadronic dimension

4

quark-gluon plasma: pointlike colored constituents

= deconfinement: insulator-conductor transition in QCD

e quark mass shift

at 7' = 0, quarks ‘dress’ with gluons — constituent quarks

bare quark mass m, ~ 0 — constituent quark mass M, ~ 300 MeV
in hot medium, dressing ‘melts’ M, — 0
for m, =0, Locp has chiral symmetry

M, # 0 — spontaneous chiral symmetry breaking

M, — 0 = chiral symmetry restoration
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e diquark matter

deconfined quarks ~ attractive interaction

can form colored bosonic ‘diquark’ pairs (QCD’s Cooper pairs)

form condensate = color superconductor

e expected phase diagram of QCD:

T
quark—gluon
Tc ™ plasma
hadronic
matter
color
superconductor

Hc M

baryochemical potential i ~ baryon density.
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2.2 From Hadrons to Quarks and Gluons

2
1

simplest confined matter: ideal pion gas P, = % 37T ~ 5 T

simplest deconfined matter: ideal quark-gluon plasma

: 7
PQGPZ;T—O{2><8+§[2><2><2><3]}T4—B:4T4—B

with bag pressure B for outside/inside vacuum

= compare FP(T) and Pycp(T) vs. T

P
QGP

phase transition from hadronic matter at low 7' to QGP at high T
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critical temperature:

P, = Pygp — T} ~ 0.3 B ~ 150 MeV

with B4 ~ 200 MeV from quarkonium spectroscopy

corresponding energy densities

€W§T4—>€QGP’112 T+ B

QGP

|atent heat of
deconfinement

T T4

at 7., energy density changes abruptly by latent heat of deconfinement

so far, simplistic model; real world?
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2.3 Finite Temperature Lattice QCD

given QCD as dynamics input, calculate resulting thermodynamics,

based on QCD partition function
= lattice regularization

e energy density

= latent heat of deconfinement

For Ny =2,2+1:

T. ~ 175 MeV
e(T,) ~ 0.5—1.0 GeV /fm®

16.0
140
12.0
10.0
8.0 r
6.0 r
40 r
20 r

0.0

3 flavour

2 flavour

T, |

1.0

15

2.0 25

3.0

3.5 4.0

explicit relation to deconfinement, chiral symmetry restoration?

= order parameters
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e deconfinement = My — 00

Polyakov loop L(T') ~ exp{—Fo/T'}

Fyg: free energy of QQ pair for r — oo

=0 T < T} confinement
L(T)
# 0 T > Ty, deconfinement

variation defines deconfinement temperature 77,

e chiral symmetry restoration = my, — 0

chiral condensate x(T) = (¥9)) ~ M,
measures dynamically generated (‘constituent’) quark mass

#0 T < T, chiral symmetry broken

X(T)
=0 T'>T1T), chiral symmetry restored

variation defines chiral symmetry temperature 7
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e how are 77 and 7, related?
pure SU(N) gauge theory: ~ spontaneous Zy breaking at 77
full QCD, chiral limit: ~ explicit Zy breaking by x(7) — 0 at 7},

chiral symmetry restoration = deconfinement

lattice results 0 3T 7 I I S 1

mqaiOOQi mqa100276o

6/g°~T 6/g°~T

Polyakov loop & chiral condensate vs. temperature

at © =0, 4 one transition hadronic matter - QGP
for Nf :2,mq — 0 at TCITL:TX’X 175 MeV
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e nature of transition at y =0

— for m, — oo (pure gauge theory)
spontaneous Zy breaking — deconfinement transition

— for m, — 0, spontaneous chiral symmetry breaking — chiral
transition

— for finite quark masses, no spontaneous symmetry breaking
or restoration, hence in general no singular behaviour

—both L(T) and x(7') vary sharply for all m,, define common
transition point 7,

— what kind of transition?

«—— second order —» flrs/t/order

depends on Ny and m,: ms o
physical point

continuous, first order .

“rapid” cross-over

cross—over region

My,d
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e non-zero net baryon density

(W#0,Ny> Ny, Np=2+1)

Cross—over

deconfinement

A

critical point
first order

computer algorithms break down:
confinement

reweighting, analytic continuation,

power series...; expect:
He H

critical point in 7T—u plane depends on position of physical point

in ms—m, 4 plane

e cross-over region (the real world): enigmatic

— no thermal singularity, no thermal phase transition
— so what does it mean: new state of matter?

— observables change rapidly

— clear transition in entire region: why?

— what 1s the transition mechanism?
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e hadronic matter is formed when connected cluster is possible,

deconfinement occurs when connected vacuum “disappears”

0.34 _ 1.24

nC: nC:

(47) r} (47) 7}
end of hadronic state at © ~ 0: interacting medium of hadrons
resonance domination = ideal gas of hadrons/resonances;

at what 7T is n,(T) = n.?

T, ~ 170 MeV

deconfinement as percolation:

when a hadronic medium becomes so dense that only isolated
vacuum bubbles survive, then it becomes a quark-gluon plasma
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3. Probing Matter in Statistical QCD

given a box of strongly interacting matter in thermal equilibrium,

how can theorists determine its state through QCD calculations?

NB:

equilibrium thermodynamics, no collision

dynamics, time dependence, equilibration, ?
expansion, cooling, etc.

3.1 Interaction Range and Colour Screening

static quark/antiquark in medium: interaction vs. separation?

at T' = 0, confining “string” potential NN o0

V(r)~aor R
string breaks for V(r) > 2M, ) | o b
= two light-heavy mesons (Qg), (Qq)
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with increasing temperature,

potential strength and
range reduced (from LL™ correlations)

string breaks earlier

I m

= colour screening / r

(Bielefeld, 16 x 4, Ny = 2, m,/T = 0.4)

screening radius ~ interaction range | oD [fmi

drop sharply as T' — T.
10+

string breaking point falls
from r ~ 1.5 fm to r ~ 0.3 fm
for T/T,=0to T/T, =2

TITe

0.5 1.0 15
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3.2 Light Hadron Spectroscopy

look at mass spectrum of virtual photons emitted from box

v —ete”

\T)/ TIT
expect: ozl V@D c

in hadronic phase p — v* — eTe”
so that M (v*) ~ M(p)

in QGP phase g7 — 7" — ete”
so that M (y*) ~ T

02r

01r

10 20 3.0

lattice calculations: (Bielefeld, quenched QCD, 643 x 16)

confined state: hadronic scale, peak at p mass
position ~ temperature-independent

deconfined state: temperature scale, broad peak at position ~ T
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3.2 Charmonium Spectroscopy

existence of heavy quark-antiquark bound states (J/v, x., ¥',...) as

indicator of nature and temperature of medium

lattice calculations for

spectral functions of c¢ systems
(Bielefeld, quenched QCD, 48% x 10 — 24)

J/1 persists up to 2.3 7. >T > 1.5 1T,
Y. 1s dissociated for 7' > 1.1 T,

widths?

cross check:

compare to interaction range,
potential models (Schrodinger equ’n)

Xc and ¢’ analyze deconfinement transition

0.75Tc
15Tc
2.3Tc

4

0.75Tc
11Tc

M IGeV1

10+




Critical Behaviour in QCD

for 1~ 0 and all values of m,, Ny

7 a well-defined transition temperature 7. at which

e deconfinement sets in

e chiral symmetry is restored

e latent heat of deconfinement increases energy density

e colour screening decreases interaction range

e dilepton spectra go from hadron decay to thermal annihilation

e charmonium dissociation analyzes transition region

To study critical behaviour, you must find the transition point
and determine how the system and its observables

change from one side to the other.
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To illustrate relation thermal vs. geometric, again see Ising model

e 1 =0: use Ising dynamics for cluster definition
= percolation = magnetization transition

equivalent formulations of same phenomenon

e H+#0, no thermodynamic transition

m(T) percolation

partition function is analytic

Kertesz line

symmetry is always broken o percolation

percolation persists: = “Kertesz line”

e thermodynamic ~ geometric Te T

geometric ¥ thermodynamic

percolation can occur even when partition function is analytic —
cluster observables still diverge

...there are more critical phenomena in nature
than the partition function knows of...
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So what does happen along the “Kertesz line”?

2-d Ising model, external field H 1

consider average number n(S) of clusters of size S of | spins:

exp{—hS — I'(T)S'/?} N exp{—hS[1 — (I(T)/h)S~'/%]}

n(S> ~ ST S’T

with “bulk” term h S and “surface” term I" S!/2

surface pressure ['(T) is order parameter for percolation

(T —Ty)* >0 VT<T;
I(T) ~
0 VT >T,

defines Kertesz line, is singular even for analytic partition function
in thermodynamic limit S — oo, surface term does not contribute

percolation ~ NLO critical behaviour
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