

CERN - 07/08 Oct 2008, GKT design review

A.Cotta Ramusino INFN-FE

Testing of the GTK demonstrators

Summary:

- specifications for the "GTK proximity card"
- a proposal for the GTK demonstrators DAQ
- ALTERA FPGA resources: I/O standards, SER-DES units, memory and more
- XILINX FPGA resources: I/O standards, SER-DES units, memory and more
- ACTEL FPGA resources (brief)

The "GTK proximity" card must:

• provide a low-jitter clock to the GTK ASIC (<u>160MHz</u> to the INFN-TO GTK demonstrator ASIC, <u>320 MHz</u> to the CERN GTK demonstrator ASIC) starting from a low-jitter 40MHz clock. The "GTK proximity" card <u>should have</u> <u>an input port for a "system-wide" 40MHz clock</u> in a **test (beam) setup** with multiple GTK ASICs and GTK proximity cards (<u>eventually one board could have an on-board oscillator and act as a timing master for the others</u>)

• provide a "RESET" signal to the GTK ASIC; the "RESET" timing could be determined by an <u>external</u> source (like the "Trigger Logic Unit-TLU" discussed later on) or by an internal source. <u>Eventually one board could act as a</u> <u>"RESET" master for the other boards</u> in a test (beam) setup with multiple "GTK proximity" cards

 \cdot provide regulated power supplies to the GTK ASIC

• provide all programmable bias voltages needed by the GTK ASIC. Remote controlled of these programming voltages is provided via an Ethernet "SLOW CONTROL" port

• provide a "CALIBRATE" signal to the GTK ASIC: the "CALIBRATE" timing could be determined by an <u>external</u> source or by an internal one (a "SLOW CONTROL" command for instance). <u>Eventually one board could act as a</u> <u>"CALIBRATE" master for the other boards</u> in a test beam setup with multiple "GTK proximity" cards

 \cdot read out the GTK ASIC (+provide temporary data storage and trigger matching if a triggered DAQ is foreseen)

• foresee a trigger input interface and resources for trigger matching if the test (beam) setup foresees an experimental trigger (generated for instance by the "Trigger Logic Unit" introduced later on)

• transfer readout data via a Gigabit Ethernet port (MORE THAN 1 are needed?) to the test(beam) CPU farm

drive (optionally) the output data also through a CERN GOL chip + laser + fiber to a TELL1
 board (if there is enough time to attempt reading out the GTK demonstrator already with the LHCb's TELL1 board)

GTK-DEMO "proximity card" block diagram

Summary (as of last meeting) of the I/O signals for basic GTK operation and readout

#bit per porta	tipo della porta	direz. per la FPGA	nome della porta	freq. operativa	per GTK ASIC	note
1	diff LVDS / HyperTransport (LDT_25)	IN	NA62Clk_IN	@40.04MHz		
1	HyperTransport (LDT_25)	OUT	GTK_CLK = NA62Clk_IN * 4	≈ 160MHz	GTK-TO	sfruttando PLL interna a FPGA
1	diff LVDS	OUT	GTK_CLK = NA62Clk_IN * 8	≈ 320MHz	GTK-CERN	sfruttando PLL interna a FPGA
1	diff LVDS/ HyperTransport (LDT_25)	OUT	GTK_SYNCH		entrambi	
16	HyperTransport (LDT_25)	IN	GTK-TO_data	@ ≈ 160MHz	<i>G</i> ТК-ТО	
1	HyperTransport (LDT_25)	IN	GTK-TO_DataValid	@ ≈ 160MHz	өтк-то	
1	HyperTransport (LDT_25)	IN	GTK-TO_Full	@ ≈ 160MHz	өтк-то	
1	HyperTransport (LDT_25)	IN	GTK-TO_EOC	@ ≈ 160MHz	<u> 6ТК-ТО</u>	(End Of Column Readout Enable) (?)
1	s.e. (LVCMOS?)	OUT	GTK-TO_BackPressure		GTK-TO	
2	HyperTransport (LDT_25)	OUT	GTK-TO_OE	@ ≈ 160MHz	өтк-то	
1*9	diff LVDS	IN	GTK-CERN _data	@ ≥ 320MHz	GTK-CERN	lettura alla velocita' massima consentita dal registro di uscita dell'ASIC o dall' FPGA
1*9	diff LVDS	OUT	GTK-CERN _ReadClk	@ ≥ 320MHz	GTK-CERN	lettura alla velocita' massima consentita dal registro di uscita dell'ASIC o dall' FPGA
1*9	s.e. (LVCMO5?)	IN	GTK-CERN _DataValid		GTK-CERN	
1*9	s.e. (LVCMOS?)	OUT	GTK-CERN _ReadoutDone		GTK-CERN	

I just figured out a couple days ago that the HyperTransport (alias LDT_25) is probably compatible with the signal levels expected by the INFN-TO GTK ASICs which has a 1.2V supply also for the I/O cells.

•Q: Do we need a "rad-hard" FPGA?

•A: I assume not, until proven wrong, in which case:

• ALTERA provides an indication that the configuration memory was upset by radiation \rightarrow possible to detect the event and fix the upset by re-configuration \rightarrow dead time).

• XILINX does not seem to have a similar feature but makes rad-hard chips (Virtex-4Q at 14K€ according to G.Mazza)

• ACTEL makes the RTAX-S/SL familyfeaturing SEU-hardened flip-flops implemented without any user intervention: it offers the benefits of user-implemented triple module redundancy (TMR) without the associated overhead. (I have no price information). An antifuse device such as the AX2000-1FG1152 costs about 570\$

• Q: What FPGA should we use to accomodate the standard and the quantities of signals involved in handling the GTK-DEMO ASICs?

• A: I was not able to find one FPGA which could interface to the INFN-TO chip directly, due to the 1.2V supply chosen for the I/O cells.

For instance: the ALTERA STRATIX II / STRATIX II GX and XILINX VIRTEX-4 <u>support</u> <u>HyperTransport (alias LDT_25) which is fine for the differential lines to/from the INFN-TO GTK</u> <u>but they don't support a s.e. standard LVCMOS @1.2V</u> (only HSTL_12 which is a voltage referenced standard).

The <u>ALTERA Cyclone III devices support LVCMOS @1.2V but do not support LDT_25</u>. Similarly the VIRTEX-4Q support LDT_25 but only the GTL-DCI standard (1.2V supply, voltage referenced at 0.8V)...

Question to the TORINO GTK Designer: IS IT POSSIBLE TO BRING THE I/O SUPPLY to 2.5V on the GTK demonstrator ???

If not we could:

- Use a Cyclone III, for instance, not supporting the Hypertransport standard but supporting the LVCMOS @1.2V. Cyclone III supports the LVDS standard and this could be possibly translated to match the 1.2V voltage compliance of the INFN-TO GTK as explained in details in the paper by <u>Stefano Chiozzi, INFN-FE</u>.

Or:

- use a Stratix II / Stratix II GX / Virtex-4 device supporting the Hypertransport-LDT_25 standard for high speed differential connections to the GTK demonstrator and use a bus switch such as, for instance, the (slow!) AnalogDevices ADG3308 to translate the 1.5V-LVCMOS down to 1.2 for non timing critical single ended connections to the GTK ASIC

ADG3308: Low Voltage, 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translator

a proposal for the GTK demonstrators DAQ

The EUDET "TLU" (Trigger Logic Unit): a candidate (?) Trigger unit for the GTK demonstrator readout

13 Trigger Data Handshake

- 1) TLU receives trigger from beam scintillators
- 2) TLU asserts TRIGGER
- 3) On receipt of TRIGGER going high, the detector asserts BUSY
- On receipt of BUSY going high, TLU de-asserts TRIGGER and switches the TRIGGER line to the output of a shift register holding the trigger number/data.
- The DUT clocks data out of the shift register by toggling TRIGGER_CLOCK. Data changes on the rising edge of TRIGGER_CLOCK. The least significant bit of the trigger data is shifted out first.
- After clocking out the trigger number (and the detector being ready to take more data. the DUT de-asserts BUSY)
 Clock input

Source: http://indico.cern.ch/getFile.py/access?contribId=7&sessionId=1&resId=0&materialId=slides&confId=34050

a proposal for the GTK demonstrators DAQ

A simple DAQ system for a beam test could be based on:

a clock distribution network (not shown)

a TLU, generating triggers from PMTs and distributing triggers along with trigger numbers
two (or more) "GTK proximity" cards connected to the TLU (to get the trigger number and set the BUSY signal) and connected to the DAQ PC: data is transferred via the GigabitEthernet. To improve ethernet throughput more events could be accumulated in a "Multievent" packet (as in the TELL1 board) to form a "jumbo" ethernet Frame. In that case the BUSY is not set on a event-by-event bases

Pricing (approximate)

Stratix III: minimum size currently available according to ALTERA web site: 150K logic elements

Manufacturer Part Number	Description	Category	Series	Minimum Quantity	Quantity Available	Unit Price
▲ ▼	▲ ▼			Minimum Quantity		חפוו
EP3SL150F780C3N	IC STRATIX III FPGA 150K 780FBGA			1	17	<u>2,840.00000</u>
EP3SL150F780C2N	IC STRATIX III FPGA 150K 780FBGA	FP	Stratix® III	4	Non-Stock	<u>3,691.99250</u>

Stratix II: prices for chips with 30K logic elements

Manufacturer Part Number	Description	Category	Series		Minimum Quantity	Quantity Available	Unit Price
▲ ▼	▲ ▼	▲ ▼	▲ ▼		Minimum Quantity		USD
EP2S30F672C4	IC STRATIX II FPGA 30K 672-FBGA	FPGAs (Field Programmable Gate Array)	<u>Stratix® II</u>	Þ	1	6	<u>616.00000</u>
EP2S30F672C5	IC STRATIX II FPGA 30K 672-FBGA	FPGAs (Field Programmable Gate Array)	Stratix® II	Þ	1	7	<u>495.00000</u>
EP2S30F672C3	IC STRATIX II FPGA 30K 672-FBGA	FPGAs (Field Programmable Gate Array)	Stratix® II	ß	1	8	<u>792.00000</u>

Stratix II GX: prices for chips with 30K logic elements

Manufacturer Part Number	Description	Category	Series		Minimum Quantity	Quantity Available	Unit Price
▲ ▼	▲	▲ ▼	▲ ▼		Minimum Quantity		USD
EP2SGX30CF780C3	IC STRATIX II GX 30K 780-FBGA	FPGAs (Field Programmable Gate Array)	Stratix® II GX	ß	1	7	<u>814.00000</u>
EP2SGX30CF780C4	IC STRATIX II GX 30K 780-FBGA	FPGAs (Field Programmable Gate Array)	Stratix® II GX	ß	8	Non-Stock	<u>637.99875</u>
EP2SGX30CF780C5	IC STRATIX II GX 30K 780-FBGA	FPGAs (Field Programmable Gate Array)	Stratix® II GX	ß	1	8	<u>517.00000</u>

Cyclone III: prices for chips with 40K logic elements

Manufacturer Part Number	Description	Category	Series		Minimum Quantity	Quantity Available	Unit Price
▲ ▼	▲	▲	▲ ▼		Minimum Quantity		USD
EP3C40F780C6	IC CYCLONE III FPGA 40K 780FBGA	FPGAs (Field Programmable Gate Array)	<u>Cyclone™ III</u>	12	1	49	<u>166.50000</u>

Cyclone III: prices for chips with 80K logic elements

Manufacturer Part Number	Description	Category	Series		Minimum Quantity	Quantity Available	Unit Price	
▲ ▼	▲	▲	▲ ▼		Minimum Quantity		USD	
EP3C80F780C6	IC CYCLONE III FPGA 80K 780FBGA	FPGAs (Field Programmable Gate Array)	<u>Cyclone™ III</u>	ß	1	34	<u>368.50000</u>	
07 Oct 2008	CERN: GTK ASI	C design review A. Cotta	Ramusin	o,]	NFN-FE		11	

SingleEnded	Differential	JEDEC support	IN Reference LEVEL [V]	IN: V _{cCIO} LEVEL [V]	OUT: V _{cCIO} LEVEL [V]	Board term. Voltage [V]
3.3V-LVTTL/LVCMOS 3.0V-LVTTL/LVCMOS (PCI clamp must be enabled)		JESD8-B	-	3.3 3.0 2.5	3.0	-
2.5V-LVTTL / LVCMOS		JESD8-5	-	3.3; 3.0; 2.5	2.5	-
1.8V-LVTTL / LVCMOS		JESD8-7	-	1.8; 1.5	1.8	-
1.5V-LVCMOS		JESD8-11	-	1.8; 1.5	1.5	-
SSTL-2 classI/classII	SSTL-2 classI/classII (**)	JESD8-9A	1.25	2.5	2.5	1.25
SSTL-18 classI/classII	SSTL-18 classI/classII (**)	JESD8-15	0.9	1.8	1.8	0.9
HSTL-18 classI/classII	HSTL-18 classI/classII (**)	JESD8-6	0.9	1.8	1.8	0.9
HSTL-15 classI/classII	HSTL-15 classI/classII (**)	JESD8-6	0.75	1.5	1.5	0.75
HSTL-12 classI/classII (****)		JESD8-16a	0.6	1.2	1.2	0.6
PCI (3.3V) / PCI-X (3.3V mode 1)		-		3.0	3.0	-
	LVPECL (*)	-			3.3	
	LVDS		-		2.5 (***)	-
	HyperTransport technology				2.5	
(*): I/O standard available onl	y for input and output column clo	cks pins for St	ratixII devices			
(**): This I/O standard is only	v available on input clock pins and	DQS pins in I/	0 banks 3, 4, 7, and	8, and output clock pin	s in I/O banks 9,10, 11	, and 12.
	his I/O standard in input and output /DS input operations and have no depe					

CYCLONE	III SUPPORTED I/O ST	ANDARDS	(with yellow b	ackground Cyclone	e III specific))
SingleEnded	Differential	JEDEC support	IN Reference LEVEL[V]	IN: V _{ccio} LEVEL [V]	OUT: V _{ccio} LEVEL[V]	Board term. Voltage [V]
3.3V-LVTTL/LVCMOS 3.0V-LVTTL/LVCMOS (PCI clamp must be enabled)		JESD8-B	-	3.3 3.0 2.5	3.0	-
2.5V-LVTTL / LVCMOS		JESD8-5	-	3.3; 3.0; 2.5	2.5	-
1.8V-LVTTL / LVCMOS		JESD8-7	-	1.8; 1.5	1.8	-
1.5V-LVCMOS		JESD8-11	-	1.8; 1.5	1.5	-
1.2V-LVCMOS		JESD8-12A	-	1.2	1.2	-
SSTL-2 classI/classII	SSTL-2 classI/classII (*),(**)	JESD8-9A	1.25	2.5	2.5	1.25
SSTL-18 classI/classII	SSTL-18 classI/classII (*),(**)	JESD8-15	0.9	1.8	1.8	0.9
HSTL-18 classI/classII	HSTL-18 classI/classII (*),(**)	JESD8-6	0.9	1.8	1.8	0.9
HSTL-15 classI/classII	HSTL-15 classI/classII (*),(**)	JESD8-6	0.75	1.5	1.5	0.75
HSTL-12 classI/classII	HSTL-12 classI/classII (*),(**)	JESD8-16a	0.6	1.2	1.2	0.6
PCI (3.3V)/PCI-X (3.3V mode 1) (PCI LocalBus Rev 2.2/1.0A)		-		3.0	3.0	-
	LVPECL (***)	-		2.5		
	LVDS			2.5	2.5	
	BLVDS (BusLVDS)			2.5	2.5	
	PPDS (****)				2.5	
	RSDS (****)				2.5	
	mini-LVDS (****)				2.5	
	outputs use two single-ended outputs v ind SSTL inputs and only decode one of		utput programmed as i	nverted. Differential HSTL	and SSTL inputs tree	at differential
(**): Differential HSTL and SSTL	. are only supported on CLK, DQS input	ts or PLL_OUT ou	iputs pins.			
(***): I/O standard available only	on CLK,DQS INPUTS for Cyclone III	devices				
(****):PPDS, mini-LVDS, RSDS of	only supported on output pins; regist	ered trade marks	of National Semicond	uctors		
(*****): BLVDS output uses two si	ingle-ended outputs with the second ou	utput programme	d as inverted. BLVDS in	nput uses LVDS input buffe	r.	

I/O STA	INDARDS	Ар	plications
SingleEnded	Differential	SingleEnded	Differential
3.3V-LVTTL/LVCMOS 3.0V-LVTTL/LVCMOS		General Purpose (PCI clamp must be enabled)	General Purpose (PCI clamp must be enabled)
2.5V-1.8V-1.5V-1.2V LVTTL/LVCMOS		General Purpose	General Purpose
SSTL-2 classI/classII	SSTL-2 classI/classII	DDR SDRAM	DDR SDRAM
SSTL-18 classI/classII	SSTL-18 classI/classII	DDR SDRAM	DDR2 SDRAM
HSTL-18 classI/classII	HSTL-18 classI/classII	QDRII SRAM/RLDRAM II/SRAM	Clock Interfaces
HSTL-15 classI/classII	HSTL-15 classI/classII	QDRII SRAM/RLDRAM II/SRAM	Clock Interfaces
HSTL-12 classI/classII	HSTL-12 classI/classII	General Purpose (*)	Clock Interfaces (*)
PCI (3.3V) / PCI-X (3.3V mode 1)		PC /embedded systems @33/66MHz for PCI, @133MHz for PCI-X Spec Rev 1.0A	
	LVPECL (**)		Video graphics and clock distribution
	LVDS		High-speed communications
	HyperTransport technology		PCB interfaces
	BLVDS:Bus LVDS		bidirectional backplanes
	RSDS: (***)		reduced swing diff. signaling (***)
	mini-LVDS (***)		smaller voltage swing than LVDS (****)
	PPDS: (***)		point-to-point differential signaling
(*): single ended 1.2-V HSTL is only suppopulation of the second state of the second s	orted in I/O banks 4,7, and 8 in STRATIX	II devices; Differential HSTL and SSTL are	e only supported on CLK, DQS inputs or PLL_OU
(**): available only for input and outp	ut column clocks pins for StratixII d	evices and only on CLK,DQS INPUTS for Cy	clone III devices
		marks of National Semiconductors	

Termination schemes: S.E. SSTL/HSTL

Source: "Stratix II device handbook", vol.2 - section: "Stratix II and Stratix II GX I/O Standards Support"

Although there is no EIA/JEDEC standard available for the 1.2-V HSTL standard, Altera supports it for applications that operate in the 0.0 to 1.2-V HSTL logic nominal switching range. 1.2-V HSTL can be terminated through series or parallel on-chip termination (OCT).

Termination schemes (most relevant): LVDS

I/O supply voltage for left and right I/O banks (1, 2, 5, and 6)		2.375	2.500	2.625	v
aput differential voltage swing (single-ended)		100	350	900	mV
Input common mode voltage		200	1,250	1,800	mV
Output differential voltage (single-ended)	R _L = 100 Ω	250		450	mV
Output common mode voltage	R _L = 100 Ω	1.125		1.375	v
Receiver differential input discrete resistor (external to Stratix II devices)		90	100	110	Ω

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{ccio} (1)	I/O supply voltage for top and bottom PLL banks (9, 10, 11, and 12)		3.135	3.300	3.465	V
VID	Input differential voltage swing (single-ended)		100	350	900	mV
VICM	Input common mode voltage		200	1,250	1,800	mV
Vod	Output differential voltage (single-ended)	R _L = 100 Ω	250		710	mV
V _{осм}	Output common mode voltage	R _L = 100 Ω	840		1,570	mV
RL	Receiver differential input discrete resistor (external to Stratix II devices)		90	100	110	Ω

07 Oct 2008

VID VICM VOD VOCM

Source: "Stratix II device handbook", pages 766

There are four dedicated high-speed P devices and eight dedicated high-spee	MAX clock I/O pin is 3	toggle rate is differ	ent from MA bit rate for d	• a -3 STRATI X data bit rate. If / ual data rate (DDR) the same I/O pin.	NAX clock tog		
devices to multiply reference clocks ar SERDES channels.	devices to multiply reference clocks and drive high-speed differential		COLUMN [MHz]		ROW [MHz]		ED CLOCK [MHz]
SingleEnded	Differential	IN	OUT (@ OpF load)	IN	OUT (@ OpF load)	IN	OUT (@ OpF load)
3.3V-LVTTL/LVCMOS 3.0V-LVTTL/LVCMOS		500	1030	500	580	500	1100 (3.3V LVCMO5)
2.5V-1.8V-1.5V LVTTL/LVCMOS		500	1131(1.8V)	500	660(1.8V)	500	1131(1.8V)
SSTL-2 classI/classII	SSTL-2 classI/classII	500 500	400 400	500 -	400(I) 400(I)	500 500	400 400
SSTL-18 classI/classII	SSTL-18 classI/classII	500 500	700(I) 700(I)	500 -	500(I) 350(I)	500 500	650(I) 650(I)
HSTL-18 classI/classII	HSTL-18 classI/classII	500 500	700(I) 700(I)	500 -	700(I) -	500 500	700(I) 700(I)
HSTL-15 classI/classII	HSTL-15 classI/classII	500 500	700 700	500 -	700(I) -	500 500	700 700
HSTL-12 classI/classII		280	280 (OCT 50Ω)	-	-	280	280 (<i>OC</i> T 50Ω)
PCI (3.3V) / PCI-X (3.3V mode 1)		500	1000	-	-	500	1000
	LVPECL	-	-	-	-	450	450
	LVDS L/R banks	-	-	520	500	717	450
	LVDS T/B banks	-	-	-	500	450	450
	HyperTransport	-	-	520	500	717	-

Table 5–2. Differential Channels in Stratix II Devices (Part 1 of 2) Notes (1), (2), and (3)

Device	484-Pin FineLine BGA	484-Pin Hybrid FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA Within the 1,508-pin Fin
EP2S15	38 transmitters 42 receivers		38 transmitters 42 receivers			
EP2S30	38 transmitters 42 receivers		58 transmittees 62 receivers	2		
EP2S60	38 transmitters 42 receivers		58 transmitters 62 receivers		84 transmitters 84 receivers	
EP2S90		38 transmitters 42 receivers		64 transmitters 68 receivers	90 transmitters 94 receivers	118 transmitters 118 receivers
EP2S130				64 transmitters 68 receivers	88 transmitters 92 receivers	156 transmitters 156 receivers

For a 30K gate EP2S30F672C3 device in a 672 pin FBGA package

CAVEATS:

 \cdot Stratix II devices offer a complete clock management solution with internal clock frequency of up to 550 MHz

•In Stratix II devices, the LVDS I/O standard requires a 2.5-V VCCIO level for the side I/O pins in banks 1, 2, 5, and 6. The top and bottom banks have different VCCIO requirements for the LVDS I/O standard. The LVDS clock I/O pins in banks 9 through 12 require a 3.3-V VCCIO level. Within these banks, the PLL[5,6,11,12]_OUT[1,2] pins support output only LVDS operations. The PLL[5,6,11,12]_FB/OUT2 pins support LVDS input or output operations but cannot be configured for bidirectional LVDS operations. The LVDS clock input pins in banks 4, 5, 7, and 8 use VCCINT and have no dependency on the VCCIO voltage level.

07 Oct 2008

CERN: GTK ASIC design review A. Cotta Ramusino, INFN-FE

Source: "Stratix II GX device handbook", pages 1484

four dedicated high-speed PLLs in the	There are two dedicated high-speed PLLs in the EP2SGX30 device and four dedicated high-speed PLLs in the EP2SGX60, EP2SGX90, and EP2SGX130 devices to multiply reference clocks and drive high-speed		Max Toggle rate for a -3 STRATIX II GX device MAX clock toggle rate is different from MAX data bit rate. If MAX clock toggle rate on a regular I/O pin is 300 MHz, MAX data bit rate for dual data rate (DDR) could be potentially as high as 600 Mbps on the same I/O pin.							
differential SERDES channels.	iee ciocio una anne nign opeca	COLUMN [MHz]		RO	W [MHz]	DEDICAT	ED CLOCK [MHz]			
SingleEnded			OUT (@ OpF load)	IN	OUT (@ OpF load)	IN	OUT (@ OpF load)			
3.3V-LVTTL/LVCMOS 3.0V-LVTTL/LVCMOS		500	1030	500	580	500	1100 (3.3V LVCMOS)			
2.5V-1.8V-1.5V LVTTL/LVCMOS		500	1131(1.8V)	500	660(1.8V)	500	1131(1.8V)			
SSTL-2 classI/classII	SSTL-2 classI/classII	500 500	400 400	500 -	400(I) 400(I)	500 500	400 400			
SSTL-18 classI/classII	SSTL-18 classI/classII	500 500	700(I) 700(I)	500 -	500(I) 350(I)	500 500	650(I) 650(I)			
HSTL-18 classI/classII	HSTL-18 classI/classII	500 500	700(I) 700(I)	500 -	700(I) -	500 500	700(I) 700(I)			
HSTL-15 classI/classII	HSTL-15 classI/classII	500 500	700 700	500 -	700(I) -	500 500	700 700			
HSTL-12 classI/classII		280 280	-	-	-	280	-			
PCI (3.3V) / PCI-X (3.3V mode 1)		500	1000	-	-	500	-			
	LVPECL	-	-	-	-	717H/450V	450			
	LVDS L/R banks	-	-	520	717	717	450			
	LVDS T/B banks	-	-	-	717	450	450			
	HyperTransport	-	-	520	717	717H/450V	-			

Table 11–3. Differential Channels in Stratix II GX Devices

only!!! For a 30K gate EP2SGX30F672C3 device in a 780 pin FBGA package

CAVEATS:

•The LVDS I/O standard is a differential high-speed, low-voltage swing, low-power, general-purpose I/O interface standard. In Stratix II devices, the LVDS I/O standard requires a 2.5-V VCCIO level for the side I/O pins in banks 1, 2, 5, and 6. The top and bottom banks have different VCCIO requirements for the LVDS I/O standard. The LVDS clock I/O pins in banks 9 through 12 require a 3.3-V VCCIO level. Within these banks. the PLL[5,6,11,12]_OUT[1,2] pins support output only LVDS operations. The PLL[5,6,11,12]_FB/OUT2 pins support LVDS input or output operations but cannot be configured for bidirectional LVDS operations. The LVDS clock input pins in banks 4, 5, 7, and 8 use VCCINT and have no dependency on the VCCIO voltage level.

CERN: GTK ASIC design review A. Cotta Ramusino, INFN-FE

Source: " Cyclone II pages 468	C device handbook",	Max Toggle rate for a -6 Cyclone III device: MAX clock toggle rate is different from MAX data bit rate. If MAX toggle rate on a regular I/O pin is 300 MHz, MAX data bit rate for dual data rate (DDR) could be in principle as high as 600 Mbps on the same I/O pin.								
P-9-0		COLU	MN [MHz]	RO	ROW [MHz]		ED CLOCK [MHz]			
SingleEnded	Differential	IN	OUT(@ OpF load)	IN	OUT(@ OpF load)	IN	OUT(@ OpF load)			
3.3V-LVTTL/LVCMOS 3.0V-LVTTL/LVCMOS		250	250	250	250	250	250			
2.5V-1.8V-1.5V-1.2V LVTTL/LVCMOS		250 (200@1.2V)	250 (200@1.2V)	250 (200@1.2V)	250 (200@1.2V)	250 (200@1.2V)	250 (200@1.2V)			
SSTL-2 classI/classII	SSTL-2 classI/classII	250 -	250 -	250 -	250 -	250 250	250 250			
SSTL-18 classI/classII	SSTL-18 classI/classII	300 -	300 -	300 -	300 -	300 300	300 300(I)			
HSTL-18 classI/classII	HSTL-18 classI/classII	300 -	300 -	300 -	300 -	300 300	300 300(I)			
HSTL-15 classI/classII	HSTL-15 classI/classII	300 -	300 -	300 -	300 -	300 500	300 300(I)			
HSTL-12 classI/classII	HSTL-12 classI/classII	125 -	125	125(I) -	-	125 125	125 125(I)			
PCI (3.3V) / PCI-X (3.3V mode 1)		250	250	250	250	250	250			
	LVPECL	-	-	-	-	438	-			
	LVDS / LVDS_E_3R	438	- / 320	438	420 / 320	438	- / 320			
	BLVDS:Bus LVDS	438	250	438	250		-			
	RSDS / RSDSE_3R		-		180 / 180		- / 180			
	mini-LVDS/mini-LVDS_E_3R		- / 155		200 / 200		- / 155			
	PPDS / PPDS_E_3R		220		220 / 220		- / 220			

Table 8-2. Cyclone III Device Differential Channels Notes (1), (1) Number of Differential Channels Device Package Pin Count User I/O Clock Pin Total EP3C40 EQFP 240 14 8 22 FBGA 324 49 8 57 484 115 FBGA 8 123 780 215 223 FBGA 8 UBGA 115 123 484 8 EP3C80 FBGA 484 101 8 109 169 FBGA 780 8 177 UBGA 484 101 8 109

223 total differential I/O channels for a EP3C40F780C6 device 177 total differential I/O channels for a EP3C80F780C6 device

07 Oct 2008

Source: "Stratix II device handbook", vol.II, section:" High-Speed Differential I/O Interfaces with DPA in Stratix II and Stratix II GX Devices"

Stratix® II and Stratix® II GX device family offers up to 1-Gbps differential I/O capabilities to support <u>source</u>synchronous communication protocols such as HyperTransport[™] technology, RapidI/O, XSBI, and SPI.

07 Oct 2008

CERN: GTK ASIC design review

A. Cotta Ramusino, INFN-FE

-21

Source: "Stratix II GX device handbook"

Stratix® II and Stratix® II GX device family offers up to 1-Gbps differential I/O capabilities to support <u>source</u>synchronous communication protocols such as HyperTransport[™] technology, RapidI/O, XSBI, and SPI.

Source: "Stratix II GX device handbook"

Stratix[®] II GX devices incorporate dedicated embedded circuitry on the right side of the device, which contains up to 20 high-speed 6.375-Gbps serial transceiver channels.

Each Stratix II GX transceiver block contains four full-duplex channels and supporting logic. The transceivers deliver bidirectional point-to-point data transmissions, with up to 51 Gbps (6.375 Gbps per channel) of full-duplex data transmission per transceiver block.

The transceiver channels can be configured in one of the following functional modes:

- PCI Express (PIPE)
- OIF CEI PHY Interface
- SONET/SDH
- Gigabit Ethernet (GIGE)
- ∎ XĂUI
- Basic (600 Mbps to 3.125 Gbps single-width mode and 1 Gbps to 6.375 Gbps double-width mode)
- SDI (HD, 3G)
- CPRI (614 Mbps, 1228 Mbps, 2456 Mbps)
- Serial RapidIO (1.25 Gbps, 2.5 Gbps, 3.125 Gbps)
- 07 Oct 2008 CERN: GTK ASIC design review A. Cotta Ramusino, INFN-FE

Ethernet MACs: internal (IP cores) vs external

Source: <u>www.altera.com</u>

10/100/1000 Mbps Ethernet MAC from MorethanIP

• IEEE 802.3 specification fully implemented

• Configuration dynamically supports 10-Mbps, 100-Mbps, or 1-Gbps operation.

• Interface connects seamlessly to commercial Gigabit

Ethernet physical layer (PHY) device via a 8-bit gigabit medium independent interface (GMII) @ 125 MHz

• Interface connects seamlessly to commercial Fast Ethernet PHY device via a 4-bit medium independent interface (MII) operating at 25 MHz

• Integrated 1000Base-X physical coding sub-layer (PCS) and physical medium attachment (PMA) (optional) when implemented in Altera® StratixTM GX devices with 8b/10b coding decoding and frame encapsulation

•Serial 1.25-Gbps medium dependent interface (MDI) (optional) implemented with Altera Stratix GX-embedded serializer/deserializer (SERDES)

• First-in first-out (FIFO) interface to user application Figure 1. 10/100/1000 Mbps Ethernet MAC Block Diagram

RX Control

CRC Pause

TX Control

CRC Pause

configuration command

MAC

PCS

PMA

The Marvell "Alaska" single-port 88E1111 transceiver leads the industry with the lowest power consumption (only 0.75W), as well as the smallest package footprint option - only 9 mm × 9 mm. The Alaska single-port 88E1111 product performs all of the physical layer (PHY) functions for half- and full-duplex 10BASE-T Ethernet on CAT 3, 4 and 5 cable, and half- and full-duplex 100BASE-TX and 1000BASE-T Ethernet on CAT 5 twisted pair cable. Additionally, the 88E1111 device offers additional support of 1000BASE-X through an integrated 1.25 GHz SERDES.

RX

FIFO

ТΧ

FIFO

Statistics 🔽

Receive

Application

Interface

Transmit

Application

Interface

ALTERA FPGA resources: I/O standards, SER-DES units, memory and more internal memory blocks

Table 1–1	Stratix II FPGA Family	Features	
	Feature	EP2S15	EP2S30
ALMs		6,240	13,552
Adaptive lo	ok-up tables (ALUTs) (1)	12,480	27,104
Equivalent I	LEs (2)	15,600	33,880
M512 RAM	blocks	104	202
M4K RAM b	blocks	78	144
M-RAM blo	cks	0	1
Total RAM I	pits	419,328	1,369,728
DSP blocks		12	10
18-bit × 18-	bit multipliers (3)	48	64
Enhanced F	PLLs	2	2
Fast PLLs		4	4
Maximum u	ser I/O pins	366	500
Takas da Talala 1	4.		-

Notes to Table 1–1:

- One ALM contains two ALUTs. The ALUT is the cell used in the Quartus[®] II software for logic synthesis.
- (2) This is the equivalent number of LEs in a Stratix device (four-input LUT-based architecture).
- (3) These multipliers are implemented using the DSP blocks.

Table 1–1. Stratix II GX Device Features

Feature	EP2SG	X30C/D	
Feature	С	D	
ALMs	13,	552	
Equivalent LEs	33,880		
Transceiver channels	4	8	
Transceiver data rate	600 Mbps to 6.375 Gbps		
Source-synchronous receive channels (1)	9	:1	
Source-synchronous transmit channels	29		
M512 RAM blocks (32 × 18 bits)	202		
M4K RAM blocks (128 × 36 bits)	14	44	
M-RAM blocks (4K × 144 bits)		1	
Total RAM bits	1,369	9,728	
Embedded multipliers (18 × 18)	6	14	
DSP blocks	1	6	
PLLs	4	4	
Maximum user I/O pins	30	61	
Package		⊢pin ne BGA	

Note to Table 1–1:

 Includes two sets of dual-purpose differential pins that can be used as two additional channels for the differential receiver or differential clock inputs.

A. Cotta Ramusino, INFN-FE

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 500 MHz. M512 blocks are grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 550 MHz. These blocks are grouped into columns across the device in between certain LABs.

M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 420 MHz. Several M-RAM blocks are located individually in the device's logic array.

Table 1–1 Cyclone III FF		\frown		\frown				
Feature	EP3C5	EP3C10	EP3C16	EP3C25	EP3C40	EP3C55	EP3C80	EP3C120
Logic Elements	5,136	10,320	15,408	24,624	39,600	55,856	81,264	119,088
Memory (Kbits)	414	414	504	594	1,134	2,340	2,745	3,888
Multipliers	23	23	56	66	126	156	244	288
PLLs	2	2	4	4	4	4	4	4
Global Clock Networks	10	10	20	20	20	20	20	20

Memory Blocks: each Cyclone III FPGA M9K memory block provides up to 9 kbits of on-chip memory capable of operation at up to 260 MHz. The embedded memory structure consists of columns of M9K memory blocks (configurable as RAM, FIFO buffers, or ROM).

	Table 4–2. Number o	f M9K Blocks in Cyclone III Devices		
	Device	Number of M9K Blocks	Total RAM Bits	Number of M9K blocks:
	EP3C5	46	423,936	MY9K DIOCKS:
	EP3C10	46	423,936]
	EP3C16	56	516,096]
_	EP3C25	66	608,256	1
L	EP3C40	126	1,161,216	126
_	EP3C55	260	2,396,160	I
	EP3C80	305	2,810,880	305
	EP3C120	432	3.981,312	

25

ALTERA FPGA resources: I/O standards, SER-DES units, memory and more Radiation: hardness issues / fault detection (SEU mitigation)

From: "Radiation Results of the SER Test of Actel, Xilinx and Altera FPGA instances" - iRoC Technologies, SA,World Trade Center, PO Box 1510 38025 Grenoble France, <u>www.iroctech.com</u> - pp.114

"1 Executive summary:

• Cosmic-ray and alpha-particle soft error rates were measured for five different architectures of FPGAs, from three different vendors, using three different programming technologies.

- Test methodology was compliant with JESD-89.
- SRAM-based FPGAs are liable to configuration SEU and SEFI when exposed to high-energy neutrons and alpha particles.
- Antifuse-based and Flash-based FPGAs did not exhibit any configuration SEU or SEFI when exposed to high-energy neutrons and alpha particles.
- $\boldsymbol{\cdot}$ Test results allowed the calculation of the ratio of SEFIs to SEUs. "

ALTERA's SEU mitigation approach:

User Mode (i.e. after the FPGA configuration is over) Error Detection:

• Soft errors are changes in a configuration random-access memory (CRAM) bit state due to an ionizing particle.

• Stratix II, Stratix II GX and Cyclone series devices have built-in error detection circuitry to detect data corruption by soft errors in the CRAM cells. This error detection capability continuously computes the CRC of the configured CRAM bits based on the contents of the device and compares it with the pre-calculated CRC value obtained at the end of the configuration.

• The Cyclone III device error detection feature does not check memory blocks and I/O buffers. These device memory blocks support parity bits that are used to check the contents of memory blocks for any error. The I/O buffers are not verified during error detection because these bits use flip-flops as storage elements that are more resistant to soft errors. Similar flip-flops are used to store the pre-calculated CRC and other error detection circuitry option bits.

• You can implement the error detection CRC feature with existing circuitry in Stratix II, Stratix II GX and Cyclone III devices, eliminating the need for external logic. The CRC is computed by the device during configuration and checked against an automatically computed CRC during normal operation. The CRC_ERROR pin reports a soft error when configuration CRAM data is corrupted, and you must decide (by means of an independent configuration controller, for instance) whether to reconfigure the FPGA by strobing the nCONFIG pin low or ignore the error.

26

XILINX FPGA resources: I/O standards, SER-DES units, memory and more Pricing (approximate)

Summary of Virtex-4 Family Features

- Three Families LX/SX/FX
 - Virtex-4 LX: High-performance logic applications solution
 - Virtex-4 SX: High-performance solution for digital signal processing (DSP) applications
 - Virtex-4 FX: High-performance, full-featured solution for embedded platform applications
- Xesium[™] Clock Technology
 - Digital clock manager (DCM) blocks
 - Additional phase-matched clock dividers (PMCD)
 - Differential global clocks
- XtremeDSP™ Slice
 - 18 x 18, two's complement, signed Multiplier
 - Optional pipeline stages
 - Built-in Accumulator (48-bit) and Adder/Subtracter
- Smart RAM Memory Hierarchy
 - Distributed RAM -
 - Dual-port 18-Kbit RAM blocks
 - Optional pipeline stages
 - Optional programmable FIFO logic automatically remaps RAM signals as FIFO signals
 - High-speed memory interface supports DDR and DDR-2 SDRAM, QDR-II, and RLDRAM-II.

- SelectIO[™] Technology
 - 1.5V to 3.3V I/O operation
 - Built-in ChipSync[™] source-synchronous technology
 - Digitally controlled impedance (DCI) active termination
 - Fine grained I/O banking (configuration in one bank)
- Flexible Logic Resources
- Secure Chip AES Bitstream Encryption
- 90-nm Copper CMOS Process
- 1.2V Core Voltage
- Flip-Chip Packaging including Pb-Free Package Choices
- RocketIO[™] 622 Mb/s to 6.5 Gb/s Multi-Gigabit Transceiver (MGT) [FX only]
- IBM PowerPC RISC Processor Core [*FX onlv*]
 - PowerPC 405 (PPC405) Core
 - Auxiliary Processor Unit Interface (User Coprocessor)
- Multiple Tri-Mode Ethernet MACs [*FX only*]

Virtex-4 FX: 20K logic cells XC4VFX60-11FF672CS1 \$ 1070,0000 XC4VFX60-10FF672CS1 \$ 856,2500

Virtex-4 FX: 40K logic cells

XC4VFX40-12FF672CS1 \$ 866,2500

XC4VFX40-11FF672CS1 \$ 618,7500

XC4VFX40-10FF672CS1 \$ 495,0000

Virtex-4 FX: 20K logic cells XC4VFX20-12FF672CS1 \$ 433,7500

XC4VFX20-11FF672CS1 \$ 310,0000

XC4VFX20-10FF672CS1 \$ 247,5000

Virtex-4 Q Pro-V: radiation tolerant devices

4 Q Pi	Q Pro-V: radiation tolerant devices							Price: Alkeuro taccording to 6. Mazz Availability: Srd quarter 2008				
Array Row x Col	Configura Logic Cells	ble Logi Slices	c Blocks (CLI Max Distributed RAM (Kb)	B) XtremeDSP Slices	Block 18-Kb Blocks	RAM Max Block RAM (Kb)	DCMs	PMCDs	PowerPC Processor Blocks	Ethernet MACs	Total I/O Banks	Max User I/O
128 x 48	55,296	24,576	384	512	320	5,760	8	2 4	-	-	13	640
128 x 52	56,880	25,280	395	128	232	4,176	12	58	2	4	13	576
192 x 84	142,128	63,168	987	192	552	9,936	20	0 8	2	4	17	896
192 x 116	200,448	89,088	1392	96	336	6,048	12	8	_	-	17	960
	4 Q P rtex-4 QPr Array Row x Col 128 x 48 128 x 52 192 x 84	A Q Pro-V: rtex-4 QPro-V FPC Configura Array Row x Col Logic Cells 128 x 48 55,296 128 x 52 56,880 192 x 84 142,128	And Pro-V: radia rtex-4 QPro-V FPGA Fam Configurable Logic Array Logic Slices 128 x 48 55,296 24,576 128 x 52 56,880 25,280 192 x 84 142,128 63,168	rtex-4 QPro-V FPGA Family Member Configurable Logic Blocks (CLI Array Row x Col Logic Cells Slices Max Distributed RAM (Kb) 128 x 48 55,296 24,576 384 128 x 52 56,880 25,280 395 192 x 84 142,128 63,168 987	A Q Pro-V: radiation tolerant d rtex-4 QPro-V FPGA Family Members Configurable Logic Blocks (CLB) Array Row x Col Logic Cells Slices Max Distributed RAM (Kb) XtremeDSP Slices 128 x 48 55,296 24,576 384 512 128 x 52 56,880 25,280 395 128 192 x 84 142,128 63,168 987 192	A Q Pro-V: radiation tolerant device Configurable Logic Blocks (CLB) Block Max Row x Col Configurable Logic Blocks (CLB) Block Array Row x Col Logic Cells Slices Max Distributed RAM (Kb) XtremeDSP Slices 18-Kb Blocks 128 x 48 55,296 24,576 384 512 320 128 x 52 56,880 25,280 395 128 232 192 x 84 142,128 63,168 987 192 552	A Q Pro-V: radiation tolerant devices Trex-4 QPro-V FPGA Family Members Block RAM Configurable Logic Blocks (CLB) Block RAM Array Row x Col Logic Cells Slices Max Distributed RAM (Kb) XtremeDSP Slices Block Blocks Max Block RAM (Kb) 128 x 48 55,296 24,576 384 512 320 5,760 128 x 52 56,880 25,280 395 128 232 4,176 192 x 84 142,128 63,168 987 192 552 9,936	A Q Pro-V: radiation tolerant devices Itex-4 QPro-V FPGA Family Members Configurable Logic Blocks (CLB) Block RAM Array Row x Col Logic Cells Slices Max Distributed RAM (Kb) XtremeDSP Slices Blocks Max Blocks Max RAM (Kb) DCMs 128 x 48 55,296 24,576 384 512 320 5,760 8 128 x 52 56,880 25,280 395 128 232 4,176 12 192 x 84 142,128 63,168 987 192 552 9,936 20	Max Distributed RAM (Kb) Block RAM Array Row x Col Configurable Logic Blocks (CLB) Block RAM Max Distributed RAM (Kb) XtremeDSP Slices Blocks Max Block RAM (Kb) DCMs Block 6 PMCDs 6 128 x 48 55,296 24,576 384 512 320 5,760 8 2 4 128 x 52 56,880 25,280 395 128 232 4,176 12 5 8 192 x 84 142,128 63,168 987 192 552 9,936 20 8	A Q Pro-V: radiation tolerant devices Itex-4 QPro-V FPGA Family Members Configurable Logic Blocks (CLB) Block RAM Array Row x Col Logic Cells Slices Max Distributed RAM (Kb) XtremeDSP Slices 18-Kb Blocks Max RAM (Kb) DCMs PMCDs PowerPC Processor Blocks 128 x 48 55,296 24,576 384 512 320 5,760 8 2 - 128 x 52 56,880 25,280 395 128 232 4,176 12 5 8 2 192 x 84 142,128 63,168 987 192 552 9,936 20 8 2	A Q Pro-V: radiation tolerant devices Itex-4 QPro-V FPGA Family Members Configurable Logic Blocks (CLB) Block RAM Array Row x Col Slices Max Distributed RAM (Kb) XtremeDSP Slices 18-Kb Blocks Max Blocks DCMs PMCDs PowerPC Processor Blocks Ethernet MACS 128 x 48 55,296 24,576 384 512 320 5,760 8 2 4 128 x 52 56,880 25,280 395 128 232 4,176 12 5 8 2 4 192 x 84 142,128 63,168 987 192 552 9,936 20 8 2 4	4 Q Pro-V: radiation tolerant devices Itex-4 QPro-V FPGA Family Members Configurable Logic Blocks (CLB) Block RAM Array Row x Col Slices Max Distributed RAM (Kb) XtremeDSP Slices 18-Kb Blocks Max RAM (Kb) PowerPC Blocks PowerPC Processor Blocks Ethernet MACS Total I/O Banks 128 x 48 55,296 24,576 384 512 320 5,760 8 2 4 13 128 x 52 56,880 25,280 395 128 232 4,176 12 8 2 4 13 192 x 84 142,128 63,168 987 192 552 9,936 20 8 2 4 17

07 Oct 2008

CERN: GTK ASIC design review A. Cotta Ramusino, INFN-FE

Virtex-4 QPro-V: radiation hardness issues

Radiation- Hardened Virtex-4 QPro-V FPGAs provide unprecedented integration with Advanced Silicon Modular Block (ASMBL[™]) architecture, including high-performance logic, PowerPC® embedded processors, XtremeDSP[™] signal processing solution and tri-mode Ethernet MACs all in a single device. Radiation-Hardened Virtex-4 QPro-V FPGAs are a powerful alternative to ASIC and antifuse technologies.

Radiation-Hardened Virtex-4 QPro-V FPGAs are based on commercial Virtex-4 technology, providing enhancements to the popular Virtex and Virtex-II families — making previous-generation designs upwards compatible. Radiation-Hardened Virtex-4 QPro-V FPGAs offer over 350 MHz performance with TID of 250 krad.

From: "Radiation-Hardened Virtex-4 QPro-V Family Overview" - XILINX - pages 7 - March 31, 2008 Radiation-Hardness Assurance

The radiation-hardened Virtex[™]-4 QPro-V FPGAs are guaranteed for total ionizing dose (TID) life and single-event latch-up (SEL) immunity. Extensive single-event upset (SEU) characterization is performed and reported by the SEE Consortium.

Total Ionizing Dose

Each wafer lot is sampled and tested per Method 1019 to assure that device performance meets or exceeds the guaranteed DC electrical specification requirements, as well as AC and timing parameters at maximum guaranteed total dose levels.

Single-Event Latch-Up

The radiation-hardened Virtex-4 technology incorporates a thin epitaxial layer in the wafer manufacturing process for

latch-up immunity assurance. The qualified mask set is verified in a heavy ion environment under vacuum, and tested at maximum V_{CC} and maximum operating temperature, to a fluence exceeding 1E7 particles/cm².

Single-Event Upset

Additional experiments are conducted in heavy ion, proton, and neutron environments in order to measure and document the susceptibility and consequence of SEU(s). An industry consortium oversees and validates the test methods, empirical data collected, and resulting analysis.

Conclusions are published on the website as well as international conferences. The Single-Event Effects Consortium Reports can be found at:

http://parts.jpl.nasa.gov/resources.htm

Symbol	Description	Min	Typical	Max	Units
TID	Total Ionizing dose Method 1019, dose rate ~50.0 rad(Si)/sec	250	-	_	krad(Si)
SEL	Single-event latch-up immunity Heavy ion linear energy transfer (LET)	100	_	_	LET (MeV-cm ² /mg)
SEFI	Single-event functional interrupt GEO 36,000 km typical day	_	1.5E–6	_	Upsets/device/day

Table 2: Radiation Tolerances⁽¹⁾

XILINX FPGA resources: I/O standards, SER-DES units, memory and more Virtex-4: supported I/O standards

Table 7: SelectIO DC Input and Output Levels

IOSTANDARD		٧ _{IL}	VII	1	Vol	V _{OH}	l _{oL}	I _{OH}
Attribute	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
LVTTL	-0.2	0.8	2.0	3.45	0.4	2.4	Note(3)	Note(3)
LVCMOS33, LVDCl33	-0.2	0.8	2.0	3.45	0.4	V _{CCO} – 0.4	Note(3)	Note(3)
LVCMOS25, LVDCl25	-0.3	0.7	1.7	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	Note(3)	Note(3)
LVCMOS18, LVDCI18	-0.3	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.3	0.4	V _{CCO} – 0.45	Note(4)	Note(4)
LVCMOS15, LVDCI15	-0.3	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.3	0.4	V _{CCO} – 0.45	Note(4)	Note(4)
PCl33_3 ⁽⁵⁾	-0.2	30% V _{CCO}	50% V _{CCO}	V _{cco}	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
PCI66_3 ⁽⁵⁾	-0.2	30% V _{CCO}	50% V _{CCO}	V _{cco}	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
PCI-X(5)	-0.2	35% V ₀₀₀	50% V ₀₀₀	V _{cce}	10% V ₀₀₀	90% V _{CCO}	1.5	-0.5
GTLP	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	-	0.6	N/A	36	N/A
GTL	-0.3	V _{REF} – 0.05	V _{REF} + 0.05	-	0.4	N/A	32	N/A
HSTL (2)	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	8	-8
HSTL II ⁽²⁾	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	16	-16
HSTL III ⁽²⁾	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} - 0.4	24	-8
HSTL IV ⁽²⁾	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} - 0.4	48	-8
DIFF HSTL II ⁽²⁾	-0.3	50% V _{CCO} – 0.1	50% V _{CCO} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	-	-
SSTL2 I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	$V_{CCO} + 0.3$	V _{TT} – 0.61	V _{TT} + 0.61	8.1	-8.1
SSTL2 II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCO} + 0.3	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
DIFF SSTL2 II	-0.3	50% V _{CCO} – 0.15	50% V _{CCO} + 0.15	V _{CCO} + 0.3	0.5	V _{CCO} – 0.5	-	-
SSTL18 I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCO} + 0.3	V _{TT} – 0.47	V _{TT} + 0.47	6.7	-6.7
SSTL18 II	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCO} + 0.3	V _{TT} – 0.60	V _{TT} + 0.60	13.4	-13.4
DIFF SSTL18 II	-0.3	50% V _{CCO} – 0.125	50% V _{CCO} + 0.125	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	-	-

GTL (Gunning Transceiver Logic)

The Gunning Transceiver Logic (GTL) standard is a high-speed bus standard (JESD8.3) invented by Xerox. Xilinx has implemented the terminated variation for this standard. This standard requires a differential amplifier input buffer and an open-drain output buffer. The negative terminal of the differential input buffer is referenced to the V_{REF} pin.

Figure 6-35: GTL with External Parallel Termination and Unconnected V_{CCO}

Table 6-10: GTL DC Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	-	N/A	-
$V_{REF} = N \times V_{TT}^{(1)}$	0.74	0.8	0.86
V _{TT}	1.14	1.2	1.26
$V_{IH} = V_{REF} + 0.05$	0.79	0.85	-
$V_{\rm IL} = V_{\rm REF} - 0.05$	-	0.75	0.81
V _{OH}	-	-	-
V _{OL}	-	0.2	0.4
I _{OH} at V _{OH} (mA)	-	-	-
$I_{OL}atV_{OL}(mA)$ at $0.4V$	32	-	-

Potentially compatible with INFN-TO GTK ASIC's diff. I/O levels (@1.2V supply)

Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
 For more information on PCI33_3, PCI66_3, and PCI-X, refer to the Virtex-4 FPGA User Guide, SelectiO Resources, Chapter 6.

Tested according to relevant specifications. Applies to both 1.5V and 1.8V HSTL. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA.

Notes

3. 4

CERN: GTK ASIC design review

XILINX FPGA resources: I/O standards, SER-DES units, memory and more Virtex-4: supported I/O standards

LDT DC Specifications (LDT 25) Table & LDT DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{cco}	Supply Voltage		2.38	2.5	2.63	V
V _{OD}	Differential Output Voltage ^(1,2)	$R_T = 100\Omega$ across Q and \overline{Q} signals	495	600	715	mV
ΔV_{OD}	Change in V _{OD} Magnitude		-15		15	mV
V _{OCM}	Output Common Mode Voltage	$R_T = 100\Omega$ across Q and \overline{Q} signals	495	600	715	mV
ΔV_{OCM}	Change in V _{OCM} Magnitude		-15		15	mV
VID	Input Differential Voltage		200	600	1000	mV
ΔV_{ID}	Change in V _{ID} Magnitude		-15		15	mV
VICM	Input Common Mode Voltage		440	600	780	mV
$\Delta V_{\rm ICM}$	Change in V _{ICM} Magnitude		-15		15	mV

HyperTransport Protocol (LDT)

The HyperTransport[™] protocol or formally known as Lightning Data Transport (LDT) is a low-voltage standard for high-speed interfaces. Its differential signaling based interface is very similar to LVDS. Virtex-4 FPGA IOBs are equipped with LDT buffers. Table 6-35 summarizes all the possible LDT I/O standards and attributes supported.

Attributes	Primitives				
Attributes	IBUFDS/IBUFGDS	OBUFDS/OBUFTDS			
IOSTANDARD	LD	T_25			
CAPACITANCE	LOW, NORMAL, DONT CARE	NORMAL			
DIFF_TERM	TRUE, FALSE	Unused			

Compatible with INFN-TO GTK ASIC's diff. I/O levels (@1.2V supply)

Notes:

Recommended input maximum voltage not to exceed V_{COD} + 0.2V.
 Recommended input minimum voltage not to go below –0.5V.

ible 9: L	VDS DC Specifications	compatible with CERN					
Symbol	DC Parameter	Conditions	Min	Тур	Max	Units	GTK ASIC's diff. I/O
V _{cco}	Supply Voltage		2.38	2.5	2.63	V	levels
V _{он}	Output High Voltage for Q and \overline{Q}	$R_T = 100\Omega$ across Q and \overline{Q} signals			1.602	V	
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100\Omega$ across Q and \overline{Q} signals	0.898			V	
V _{ODIFF}	Differential Output Voltage ^(1,2) $(Q - \overline{Q}), Q = High (\overline{Q} - Q), \overline{Q} = High$	$R_T = 100\Omega$ across Q and \overline{Q} signals	247	350	454	mV	
V _{OCM}	Output Common-Mode Voltage	$R_T = 100\Omega$ across Q and \overline{Q} signals	1.125	1.250	1.375	V	
Vidiff	Differential Input Voltage (Q – \overline{Q}), Q = High (\overline{Q} – Q), \overline{Q} = High		100	350	600	mV	
VICM	Input Common-Mode Voltage		0.3	1.2	2.2	V	

Recommended input maximum voltage not to exceed V_{COD} + 0.2V.
 Recommended input minimum voltage not to go below -0.5V.

XILINX FPGA resources: I/O standards, SER-DES units, memory and more Virtex-4: supported I/O standards

compatible with CERN GTK ASIC's diff. I/O

Extended LVDS DC Specifications (LVDSEXT 25)

Table 10: Extended LVDS DC Specifications

DC Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage		2.38	2.5	2.63	۷
Output High Voltage for Q and \overline{Q}	$R_T = 100\Omega$ across Q and \overline{Q} signals	-	-	1.785	۷
Output Low Voltage for Q and \overline{Q}	$R_T = 100\Omega$ across Q and \overline{Q} signals	0.715	-	-	۷
Differential Output Voltage (Q – \overline{Q}), Q = High (\overline{Q} – Q), \overline{Q} = High	$R_T = 100\Omega$ across Q and \overline{Q} signals	440	-	820	mV
Output Common-Mode Voltage	$R_T = 100\Omega$ across Q and \overline{Q} signals	1.125	1.250	1.375	۷
Differential Input Voltage ^(1,2) (Q − Q), Q = High (Q − Q), Q = High	Common-mode input voltage = 1.25V	100	-	1000	mV
Input Common-Mode Voltage	Differential input voltage = ±350 mV	0.3	1.2	2.2	V
	Supply Voltage Output High Voltage for Q and Q Output Low Voltage for Q and Q Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High Output Common-Mode Voltage Differential Input Voltage ^(1,2) (Q – Q), Q = High (Q – Q), Q = High	Supply Voltage Supply Voltage Output High Voltage for Q and \overline{Q} $R_T = 100\Omega$ across Q and \overline{Q} signals Output Low Voltage for Q and \overline{Q} $R_T = 100\Omega$ across Q and \overline{Q} signals Differential Output Voltage (Q - \overline{Q}), Q = High ($\overline{Q} - Q$), $\overline{Q} = High$ $R_T = 100\Omega$ across Q and \overline{Q} signals Output Common-Mode Voltage $R_T = 100\Omega$ across Q and \overline{Q} signals Differential Input Voltage ^(1,2) (Q - \overline{Q}), Q = High ($\overline{Q} - Q$), $\overline{Q} = High$ Common-mode input voltage = 1.25V	Supply Voltage 2.38 Output High Voltage for Q and \overline{Q} $R_T = 100\Omega$ across Q and \overline{Q} signals - Output Low Voltage for Q and \overline{Q} $R_T = 100\Omega$ across Q and \overline{Q} signals 0.715 Differential Output Voltage (Q - \overline{Q}), Q = High ($\overline{Q} - Q$), $\overline{Q} =$ High $R_T = 100\Omega$ across Q and \overline{Q} signals 440 Output Common-Mode Voltage $R_T = 100\Omega$ across Q and \overline{Q} signals 1.125 Differential Input Voltage ^(1,2) (Q - \overline{Q}), Q = High ($\overline{Q} - Q$), $\overline{Q} =$ High Common-mode input voltage = 1.25V 100	Supply Voltage2.382.5Output High Voltage for Q and Q $R_T = 100\Omega \operatorname{across} Q \operatorname{and} Q \operatorname{signals}$ Output Low Voltage for Q and Q $R_T = 100\Omega \operatorname{across} Q \operatorname{and} Q \operatorname{signals}$ 0.715-Differential Output Voltage (Q - Q), Q = High (Q - Q), Q = High $R_T = 100\Omega \operatorname{across} Q \operatorname{and} Q \operatorname{signals}$ 440-Output Common-Mode Voltage $R_T = 100\Omega \operatorname{across} Q \operatorname{and} Q \operatorname{signals}$ 1.1251.250Differential Input Voltage ^(1,2) (Q - Q), Q = High (Q - Q), Q = HighCommon-mode input voltage = 1.25V100	Supply Voltage 2.38 2.5 2.63 Output High Voltage for Q and Q $R_T = 100\Omega$ across Q and Q signals - - 1.785 Output Low Voltage for Q and Q $R_T = 100\Omega$ across Q and Q signals 0.715 - - Differential Output Voltage (Q - Q), Q = High (Q - Q), Q = High $R_T = 100\Omega$ across Q and Q signals 440 - 820 Output Common-Mode Voltage $R_T = 100\Omega$ across Q and Q signals 1.125 1.250 1.375 Differential Input Voltage ^(1,2) (Q - Q), Q = High (Q - Q), Q = High Common-mode input voltage = 1.25V 100 - 1000

levels

Recommended input maximum voltage not to exceed V_{CCO} + 0.2V.
 Recommended input minimum voltage not to go below -0.5V.

LVPECL DC Specifications (LVPECL 25)

These values are valid when driving a 100Ω differential load only, i.e., a 100Ω resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower com-

mon-mode ranges. Table 11 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the Virtex-4 FPGA User Guide: Chapter 6, SelectIO Resources.

Table 11: LVPECL DC Specifications

Symbol	DC Parameter	Min	Тур	Мах	Units
V _{OH}	Output High Voltage	V _{CC} - 1.025	1.545	V _{CC} – 0.88	V
V _{OL}	Output Low Voltage	V _{CC} - 1.81	0.795	V _{CC} - 1.62	V
VICM	Input Common-Mode Voltage	0.6		2.2	V
VIDIFF	Differential Input Voltage ^(1,2)	0.100		1.5	۷

Notes:

Recommended input maximum voltage not to exceed V_{COO} + 0.2V.
 Recommended input minimum voltage not to go below -0.5V.

RocketIO DC Input and Output Levels

Table 12 summarizes the DC input and output specifications of the Virtex-4 FPGA RocketIO Multi-Gigabit Serial Transceivers. Figure 1 shows the single-ended output volt-

age swing. Figure 2 shows the peak-to-peak differential output voltage. Consult the Virtex-4 Rocket/O Multi-Gigabit Transceiver User Guide for further details.

	Table	12:	RocketIO	DC Specifications	
ĺ					т

DC Parameter	Symbol	Conditions	Min	Тур	Max	Units
Peak-to-Peak Differential Input Voltage	DVIN	Internal AC Coupled	110		2400	mV
Single-Ended Input Range	SEVIN	Internal AC Coupled	0		V _{TRX}	mV
		Internal AC Coupled	100		V _{TRX} - 100	mV
Common Mode Input Voltage Range	VICM	Bypassed Internal AC Coupled ⁽¹⁾		800		mV
Single-Ended Output Voltage Swing ^(2, 3)	Vout		450		725	mV
Common Mode Output Voltage Range ⁽³⁾	V _{TCM}			1000		mV
Peak-to-Peak Differential Output Voltage ^(2, 3)	DVPPOUT		900	1050	1400	mV
Signal detect threshold	RXOOBVDPP	RX		TBD		
Electrical idle amplitude	TXOOB _{VDPP}	ТХ		65		mV
RocketlO MGT Clock DC Input Levels						
Peak-to-Peak Differential Input Voltage	VIDIFF	2 x V _{MGTCLKP} - V _{MGTCKLN}	100	600	2000	mV
Differential Input Resistance	R _{IN}		71	105	124	Ω

Notes:

The maximum V_{TRX} is 1.26V when bypassing the internal AC coupled V_{ICM}, V_{TRX} must be less than or equal to AVCCAUXRX. The cutput swing and pre-emphasis levels are selected using the attributes discussed in Chapter 4: PMA Analog Considerations in the Virtex-4 2.

Rocketto Multi-Gigabit Transceiver User Guide for details. V_{TTX} is 1.5 \pm 5%; different amplitudes possible with adjusted DAC values. З.

XILINX FPGA resources: I/O standards, SER-DES units, memory and more Virtex-4: switching performances

I have not found, in the Virtex-4 datasheet, a quote on the maximum toggle frequency at the I/O pins for each standard, as in the ALTERA data sheets.

The only maximum toggle rate quoted were:

Clock Buffers and Networks

			Speed (Grade				
Symbol	Description	-12	-11	-10) Units			
Maximum Frequency								
F _{MAX}	Global clock tree	500	450) 40	0 MHz			
lock RAM and FIFO Switching Characteristics								
Maximum Frequency								
F _{MAX}	Write first and no change mode	500.00	450.45	400.00	MHz			
F _{MAX}	Read first mode	500.00	450.45	400.00	MHz			
CLK-to-CLK	Read first mode	500.00	450.45	400.00	MHz			
Maximum Frequency								
F _{MAX}	FIFO in all modes	500.00	450.45	400.00	MHz			

Switching characteristics of I/O block pads are given in terms of propagation delays only:

T _{IOPI}			TIOOP							
s	Speed Grade			Speed Grade			Speed Grade			
-12	-11	-10	-12	-11	-10	-12	-11	-10		
1.00	1.15	1.28	1.61	1.71	1.85	1.61	1.71	1.85	ns	
1.00	1.15	1.28	1.61	1.71	1.85	1.61	1.71	1.85	ns	
1.01	1.16	1.30	1.65	1.75	1.91	1.65	1.75	1.91	ns	
1.00	1.15	1.28	1.58	1.68	1.82	1.58	1.68	1.82	ns	
1.00	1.15	1.28	1.99	2.15	2.34	1.99	2.15	2.34	ns	
1.00	1.15	1.28	1.59	1.68	1.83	1.59	1.68	1.83	ns	
	-12 1.00 1.01 1.01 1.00 1.00	Speed Grac -12 -11 1.00 1.15 1.00 1.15 1.01 1.16 1.00 1.15 1.00 1.15	Speed Grade -12 -11 -10 1.00 1.15 1.28 1.00 1.15 1.28 1.01 1.16 1.30 1.00 1.15 1.28 1.01 1.16 1.30 1.00 1.15 1.28	Speed Grade S -12 -11 -10 -12 1.00 1.15 1.28 1.61 1.00 1.15 1.28 1.61 1.01 1.16 1.30 1.65 1.00 1.15 1.28 1.61 1.00 1.15 1.28 1.58 1.00 1.15 1.28 1.99	Speed Grace Speed Grace -12 -11 -10 -12 -11 1.00 1.15 1.28 1.61 1.71 1.00 1.15 1.28 1.61 1.71 1.00 1.15 1.28 1.61 1.71 1.00 1.15 1.28 1.61 1.75 1.00 1.15 1.28 1.68 1.68 1.00 1.15 1.28 1.99 2.15	Speed Grade Speed Grade -12 -11 -10 -12 -11 -10 1.00 1.15 1.28 1.61 1.71 1.85 1.00 1.15 1.28 1.61 1.71 1.85 1.00 1.15 1.28 1.61 1.71 1.85 1.01 1.16 1.30 1.65 1.75 1.91 1.00 1.15 1.28 1.58 1.68 1.82 1.00 1.15 1.28 1.99 2.15 2.34	Speed Grade Speed Grade	Speed Grade Speed Grade Speed Grade Speed Grade -12 -11 -10 -12 -11 -10 -12 -11 1.00 1.15 1.28 1.61 1.71 1.85 1.61 1.71 1.00 1.15 1.28 1.61 1.71 1.85 1.61 1.71 1.00 1.15 1.28 1.61 1.71 1.85 1.61 1.71 1.01 1.16 1.30 1.65 1.75 1.91 1.65 1.75 1.00 1.15 1.28 1.58 1.68 1.82 1.58 1.68 1.00 1.15 1.28 1.58 1.68 1.82 1.58 1.68 1.00 1.15 1.28 1.99 2.15 2.34 1.99 2.15	Speed Grade Speed Grade Speed Grade Speed Grade -12 -11 -10 -12 -11 -10 -12 -11 -10 1.00 1.15 1.28 1.61 1.71 1.85 1.61 1.71 1.85 1.00 1.15 1.28 1.61 1.71 1.85 1.61 1.71 1.85 1.00 1.15 1.28 1.61 1.75 1.91 1.65 1.75 1.91 1.00 1.15 1.28 1.58 1.68 1.82 1.58 1.68 1.82 1.00 1.15 1.28 1.58 2.34 1.99 2.15 2.34	

									1	
LVCMOS25, Fast, 16 mA	0.69	0.80	0.88	1.89	2.03	2.21	1.89	2.03	2.21	ns
LVCMOS25, Fast, 24 mA	0.69	0.80	0.88	1.83	1.96	2.13	1.83	1.96	2.13	ns

TIOPI is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer. TIOOP is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.

TIOTP is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer.

Table 27: IOB Switching Characteristics(1,2)

1.3) Product Table

	XC 4VFX12	XC 4VFX20	XC 4VFX40	XC 4VFX60	XC 4VFX100	XC 4VFX140
Logic Cells	12,312	19,224	41,904	56,880	94,896	142,128
Block RAM/FIFO	12,512		11,201	50,000	51,050	112,120
w/ECC (18 kbits each)	36	68	144	232	376	552
Total Block RAM						
(kbits)	648	1224	2,592	4,176	6,768	9,936
Digital Clock Managers			-,		-,	-,
(DCM)	4	4	8	12	12	20
Phase-matched Clock						
Dividers (PMCD)	0	0	4	8	8	8
Max Differential I/O			\bigcap			
Pairs	160	160	224	288	384	448
XtremeDSPTM Slices	32	32	48	128	160	192
PowerPC Processor						
Blocks	1	1	2	2	2	2
10/100/1000 Ethernet			\bigcap			
MAC Blocks	2	2	(4)	4	4	4
RocketIO Serial			\bigcirc			
Transceivers	0	8	12	16	20	24
Configuration Memory						
Bits	5,017,088	7,641,088	15,838,464	22,262,016	35,122,240	50,900,352
Max SelectIO	320	320	448	576	768	896
	User	User	User	User	User	User
Package RocketIO	I/O	I/O	I/O	I/O	I/O	I/O
SF363	240	-	-	-	-	-
FF668	320	-	-	-	-	
FF1148	-	-	-	-	-	
FF1513	-	-	-	-	-	-
FF672 12	-	320 (8)**	352 (12)**	352 (12)**	-	-
FF1152 20	-	-	448 (12)**	576 (16)**	576 (20)**	-
FF1517 24	-	-	-	-	768 (20)**	768 (24)**
FF1760 24	-	-	-	-	-	896 (24)**

Ethernet MAC Overview

**Number of available RocketIO Multi-Gigabit Transceivers.

Table (1): Virtex-4 Products

ACTEL FPGA resources (brief)

Voltage-Referenced I/O Standards: GTL+, HSTL Table 1-1 • Axcelerator Family Product Profile

Actel

Rate This Document

Conformance Test Report

Brochure

Handbook

Development Kit

DirectCore IP Cores

IP Application Notes

v2.6 TM F FuseLock

Axcelerator Family FPGAs

- 350+ MHz System Performance
- 500+ MHz Internal Performance
- High-Performance Embedded FIFOs
- 700 Mb/s LVDS Capable I/Os

Specifications

- Up to 2 Million Equivalent
- Up to 684 I/Os
- Up to 10,752 Dedicated Flip-r
- Up to 295 kbits Embedded SRAM/FIFO
- Manufactured of Advanced 0.15 μm CMOS Antifuse Process Technology, 7 Layers of Metal

Features

- Single-Chip, Nonvolatile Solution
- Up to 100% Resource Utilization with 100% Pin Locking
- 1.5V Core Voltage for Low Power
- Footprint Compatible Packaging
- Flexible, Multi-Standard I/Os:
- 1.5V, 1.8V, 2.5V, 3.3V Mixed Voltage Operation
- Bank-Selectable I/Os 8 Banks per Chip
- Single-Ended I/O Standards: LVTTL, LVCMOS, 3.3V PCI, and 3.3V PCI-X
- Differential I/O Standards: LVPECL and LVDS

Class 1, SSTL2 Class 1 and 2, SSTL3 Class 1 and 2	Device	AX125	AX250	AX500	AX1000	AX2000
	Capacity (in Equivalent System Gates)	125,000	250,000	500,000	1,000,000	2,000,000
 Registered I/Os 	Typical Gates	82,000	154,000	286,000	612,000	1,060,000
 Hot-Swap Compliant I/Os (except PCI) 	Modules					4.0.750
	Register (R-cells)	672	1,408	2,688	6,048	10,752
 Programmable Slew Rate and Drive Strength on 	Combinatorial (C-cells) Maximum Flip-Flops	1,344 1,344	2,816 2,816	5,376 5,376	12,096 12,096	21,504 21,504
Outputs	Embedded RAM/FIFO	1,544	2,010	5,570	12,050	21,504
 Programmable Delay and Weak Pull-Up/Pull-Down 	Number of Core RAM Blocks	4	12	16	36	64
	Total Bits of Core RAM	18,432	55,296	73,728	165,888	294,912
Circuits on Inputs	Clocks (Segmentable)					
Embedded Memory:	Hardwired Routed	4	4	4	4	4
	PLLs	8	8	8	8	8
 Variable-Aspect 4,608-bit RAM Blocks (x1, x2, x4, 	VOs		Ŭ			Ū.
x9, x18, x36 Organizations Available)	I/O Banks	8	8	8	8	8
- Independent, Width-Configurable Read and Write Ports	Maximum User I/Os	168	248	336	516	684
	Maximum LVDS Channels	84	124	168	258	342
 Programmable Embedded FIFO Control Logic 	Total VO Registers	504	744	1,008	1,548	2,052
Segmentable Clock Resources	Package CSP	180				
	PQFP	100	208	208		
 Embedded Phase-Locked Loop: 	BGA				729	
 14-200 MHz Input Range 	FBGA	256, 324	256, 484	484, 676	484, 676, 896	896, 1152
 Frequency Synthesis Capabilities up to 1 GHz 	CQFP		208, 352	208, 352	352	352
	CCGA				624	624
 Deterministic, User-Controllable Timing 					_	
Unique In-System Diagnostic and Debug Capability	Name Function	Devid	ces Try It I	Now	Resources	
	Core10/100					
with Actel Silicon Explorer II	10/100 Mbps Communications	Fusion		 Regist 	er your Design	

- with Actel Silicon Explorer Boundary-Scan Testing Compliant 1149.1 (JTAG)
- FuseLock[™] Secure Program Prevents Reverse Engineering and

	10/100 Mbps	Communications	Fusion	
nt with IEEE Standard	Ethernet MAC with	Ethernet	IGL00	
	Host Controller		ProASIC3L	
			ProASIC3	
nming Technology	DirectCore		ProASICPLUS	
nd Design Theft			Axcelerator	
u besign men			SX-A	
			RT ProASIC3	
			RTAX-S/SL/DSP	
			RTSX-SU	

Antifuse configuration elements cannot be altered by high-energy atmospheric neutrons and are therefore suitable for high reliability applications at ground level and at aviation altitudes. » More

ACTEL FPGA resources (brief)

