NA62 front end for end of column demonstrator

Jan Kaplon/Pierre Jarron

Architecture

Preamp; buffered cascode (NMOS input transistor), resistive feedback (200k)

Gain;70mV/fC (27mV/fC at preamp output)

Preamplifier AC coupled to shaper and discriminator stages

Consumption (without transmission line driver) ; 120uA/pixel

Feedback ;

Cf=14 fF

Rf= 200k

Input transistor; NMOS 9.6/0.3um, 40uA bias

Noise

5ns peaking time CR-RC² Input transistor bias; 40uA, Feedback resistor 200kΩ Detector leakage; 20nA

Open loop gain simulation

Gain Bandwidth Product 900MHz (simulation for compensated cascode)

AC Response

Input impedance simulation

Input impedance $1 - 2k\Omega$

Phase margin simulation

Phase margin for Cinput 250fF ; 90°

Phase margin simulation

Phase margin for Cinput 500fF ; 87°

Peaking time; 4.5ns at preamp, 5.5ns at discriminator input

Good linearity and no degradation of peaking time up to 4fC (1,1.2, 3, & 4fC signals)

Transient Response

Double pulse resolution; 2 signals 3fC in 20ns distance at 0.7fC threshold

Walk; 1.5ns for 1.2 and 4fC (0.7fC threshold) Walk; 2ns for 1 and 4fC (0.7fC threshold)

Pulse width; 8 to 14ns (1 to 4fC)

PSRR (discriminator differential input)

Transient Response

Low and medium frequencies; 48dB, degrading after 1MHz Worst case; 2dB at 100MHz (5dB for standard layout NMOS)

PSRR

Transient Response

13

Transient Response

Input stage, standard versus 3well NMOS

Transient Response

Mismatch (no TRIM DACs)

3fC signal, mismatch 6mV RMS (0.1fC RMS) \rightarrow minimum threshold without trimming 0.7fC Assuming 5-bit TRIM DAC with 50mV range the mismatch can be minimized down to 1.5mV pk-pk (0.25mV RMS)

Mismatch (no TRIM DACs)

3fC signal, mismatch 6mV RMS, 300ps RMS (1.7ns pk-pk)

Noise & Jitter (transient noise simulation)

3fC signal, noise ~2mV RMS, \rightarrow ~180e- RMS

Noise & Jitter (transient noise simulation)

3fC signal, noise ~180e- RMS \rightarrow jitter 30ps RMS (160ps pk-pk)

Crossing the threshold

0.7fC signal at 0.7fC threshold; noise triggering (~180e- ENC)

Transient Response

Crossing the threshold

6/2008

0.7fC signal at 0.7fC threshold; noise triggering (5 triggers out of 10, 1.2 to 4ns width)

Transient Response

Calibration and mask register

Two D flip-flops per pixel (on top level all D flip-flops connected in one serial register)
1st bit connect Calibration input (20fF capacitor) to common calibration line (1 = CAL LINE connected)
2nd bit for masking the output (OR logic – 1 block, / 0 – pass)

Separation of analogue and digital part

2 domains of power supply and gnd on pixel

in preamplifier with 3well layout

Separation of analog and digital domain

Separation of analogue and digital power supply

Power distributed with last metal MA ($7m\Omega/sq$)

