The EU DataGrid Project

Three years of research and development in Grid technologies

Erwin.Laure@cern.ch
DataGrid Technical Coordinator
Outline

- DataGrid at a glance
- A chronological overview
- DataGrid assets
- Lessons learned
- Summary
DataGrid at a glance

People
- 500 registered users
- 12 Virtual Organisations
- 21 Certificate Authorities
- >600 people trained
- 456 man-years of effort
- 170 years funded

Software
- > 65 use cases
- 7 major software releases (> 60 in total)
- > 1,000K lines of code

Application Testbed
- ~20 regular sites
- > 60,000 jobs submitted (since 09/04, release 2.0)
- Peak >1000 CPUs
- 6 Mass Storage Systems

Scientific Applications
- 5 Earth Obs institutes
- 10 bio-informatics apps
- 6 HEP experiments
Project started on Jan 1st 2001

Early distributed testbed based on Globus 1

CA infrastructure established

Development of higher level Grid middleware started
 - Workload management ("Broker")
 - Data management (GDMP, edg-replica-manager, SE)
 - Information Services (R-GMA)
 - Fabric management (adopt LCFG)
Decided to base development on GT 2
- Delayed rollout of TB1 (EDG v1.0)

TB1 deployed on 5 sites
- CERN, NIKHEF, RAL, IN2P3, CNAF

Application evaluation started
- 1st HEP job run on TB1 on December 11th, 2001
1st EU review successfully passed on March 1st 2002

- Evaluation by end users revealed the need to **focus on stability** rather than new functionality
 - Project retreat in August resulted in re-focus on quality

Open Source license established in June 2002
- Served as model for globus and CrossGrid license

Start of tutorial program in July 2002 (GGF5)
- Developed into a road-show with hands-on sessions; more than 600 people trained in over 25 events
EDG technologies widely recognized:
- Many sites joined testbed (up to 20)
- Software used and evaluated by other projects (e.g. CrossGrid, LCG)
- Collaboration with sister projects demonstrated at IST and SC

Testbed 2 (End 2002, release 1.4.x)
- One of the largest Grid testbeds worldwide
- Allowed first production tests by applications:
 - HEP monte-carlo simulation
 - EO grid portal developed
 - Many bio informatics applications
Evaluation of Release 1.4 (Dec 02/Jan 03)

- Large increase in users
- Many sites interested in joining
- Pushing real jobs through system
- Stability and scalability not yet satisfactory
- Release 2.0 addresses the problems revealed
Chronological overview

Successfully passed 2nd annual EU review on February 4-5

- Shortcomings identified in application tests addressed:
 - WMS re-factored
 - RLS introduced
 - Data management re-factored
 - R-GMA introduced
 - Storage Element (SE) introduced
 - VOMS based security
 - Fabric monitoring
 - Upgrade underlying software (move to VDT managed releases of Globus and CondorG)

Testbed 3 (release 2.x)
- Advanced functionality, better scalability and reliability
- 2.0 released end of August
- 2.1 released in November
LCG deployed many components of EDG 2.0 in their LCG-1 service (started summer 2003) and subsequently EDG 2.1 components for LCG-2 (early 2004)

Many other Grid projects started to use EDG software in 2003:
- Grace, grid.it, DutchGrid, UK e-Science programme, CERN’s openlab, etc.
DataGrid assets

- Large scale testbed continuously available throughout the project duration
 - Have gone further than any other project in providing a continuous, large-scale grid facility

- CA Infrastructure (21 CAs worldwide)

- Innovative middleware
 - Resource Broker
 - Replica Location Service and layered data management tools (Replica Manager & Optimizer)
 - R-GMA Information and Monitoring System
 - Automated configuration and installation tools
 - Access to diverse mass storage systems (StorageElement)
 - VOMS security model

- Distributed team of people across Europe that can work together effectively to produce concrete results

- Application groups are an integral part of the project contributing to all aspects of the work
Main lessons learned

- **Applications** need to be involved in all phases of the project
 - Grid middleware is relatively new and, despite all efforts, not yet “shrink-wrap” quality – requires skilled people to be used efficiently
 - Middleware prototypes need to be available for application testing early
 - **Caveat**: prototypes tend to stay longer than expected – more advanced software might be delayed.

- **Cross-WP activities** are essential and need to be coordinated
 - Application working group, architecture task force, integration team, security group, tutorial team, quality group.

- **A sequence of (distributed) testbeds** is needed
 - Developers need their own distributed testbed to test bleeding edge software
 - Managed integration/certification/application testbeds – eventually production infrastructure

- **Site certification and validation** needs to be automated and run regularly
 - Misconfigured sites may cause many failures

- **Security** needs to be an integrated part from the very beginning
 - Adding security to existing systems is hard

- **Prompt hiring and retention of Personnel** is critical
Summary

◆ **DataGrid as Grid Technology Innovator**
 - High level middleware developed in many areas (workload and data mgmt, information services, fabric mgmt)

◆ **DataGrid as Technology Provider**
 - Software taken up by many other Grid projects (LCG, Grace, CrossGrid, grid.it, DutchGrid, UK e-science, openlab, ...)
 - Extensive training in more than 25 tutorials held in US, Europe, AP
 - Substantial contributions to standardization bodies like GGF

◆ **DataGrid as Demonstrator**
 - Successful evaluation of Grid technologies as production platform by High Energy Physics, Earth Observation, and Bioinformatics applications. This paved the way towards

◆ **Grid as next generation production infrastructure ⇒**

[Image: DataGrid logo]

[Image: eGee logo]