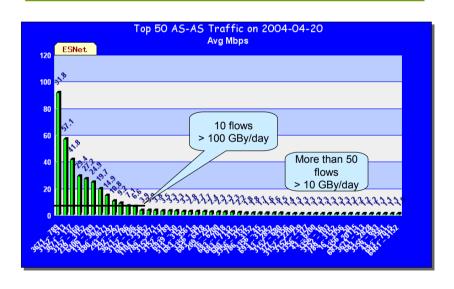


FNAL/CERN Data Transfer Challenge

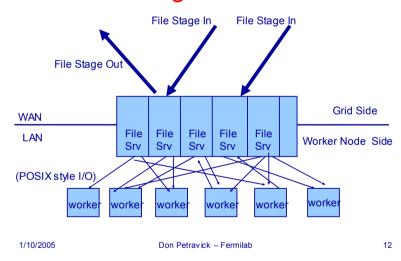

GDB

J. Bakken, D. Petravick, V. White, Fermilab Jan 12, 2004

Service Challenge

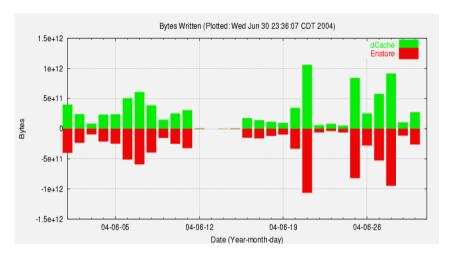
- Reliable Transfers From CERN -> FNAL are required for successful operation of the FNAL Tier-1 Center.
 - Demonstrate full storage systems
 - Storage systems are more than grid FTP servers,
- Previous high-rate testing was unit testing
 - Networks (Iperf)
 - disk-to-disk
- Scale breaking compared to current WIDE area production in US.
 - 1 TB/day is a "large" flow

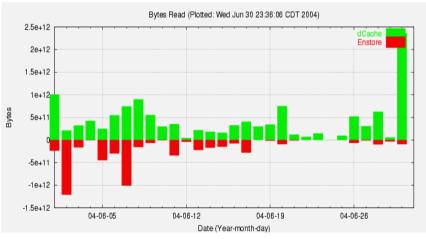
Top 50 Traffic Flows Monitoring – 24hr 2 Int'l and 2 Commercial Peering Points


CMS Challenge Goals

- Concentrate on full system level issues rather that optimizing single components.
- Given specialized tests, see how the integrated framework performs.
 - specialized set ups for specialized tests
- A production system was used at FNAL for the challenge
 - Service challenge co-existed with normal uses of the system.
 - S.C. Could not impede or interfere greatly with normal work.
 - Able to study feature interaction and scaling in the most realistic environment.

Storage System Model


- Whole files are moved to and from the SE over the GRID w/ grid interfaces.
 - Large bandwidth*delay
 - Grid interfaces (SRM, gFTP)
- Local access by WN's is Posix
 - Files are accessed bit by bit.
- dCache SE's can have more structure (not detailed in figure)
 - Can support tape.
 - Can move data through firewalls and NAT devices.
 - Can add nodes without recycling the system
 - Can carry on if nodes fail.


Storage Element

June 05 -- Prior to Challenge

- Routine production at the FNAL Tier 1 center.
 - Green netwrk movement
 - Red Tape movement
 - The two plots are not scaled the same
 - FNAL was OC-12 in June.
- Upper plot Ingest
 - up to 2.5 TB/day
- Lower plot Reads
 - up to 1.1 TB/day

Challenge SS Hardware

CERN-side

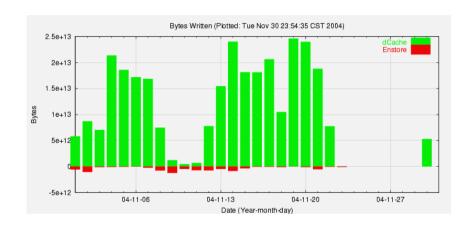
- Nine nodes were deployed for this test.
 - 3 disks/node, 10 files/disk (270 files)
 - · Gigabyte files.
- not supporting other production
- CASTOR not present.

FNAL-side

- dCache Storage system software
- 32 dCache pools on 22 nodes (3 TB total)
 - Same disk served other production pools.
- Volatile pools (No tape), automatically cleared many times/day
- Production users and tape accessing the disks.

Challenge Network Hardware

Network setup:


- CMS dCache nodes at FNAL are...
- Each 1 Gbit connected to a 6509 which is...
- Connected via 10 GB LAN_PHY to CalTech Starlight POP which is...
 - No special fire wall device
- OC192 connected to CERN...

Notes:

- The test flows were substantially the only flows on this wide area link.
- FNAL dCache nodes are on a local production LAN.
- Large MTU's were not used.

Results (throughput)

- November graph
- GridFTP protocol
- Throughput:
 - Many consecutive days of > 10 TB/day
 - 25 TB/day peak (~3 Gbit sustained)
 - Gap SC 2004"bandwidth challenge"

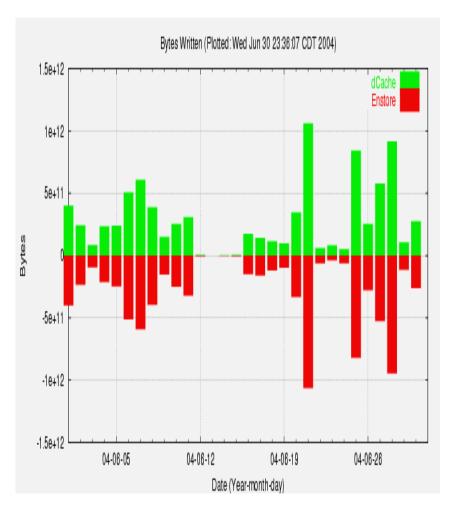
Results (TCP)

- Previous tests on specialized hardware concentrated on large TCP buffers and a few streams.
- This was not made to work in the challenge.
 - hundreds of user transfers per node, large TCP buffers quickly exhausted memory and caused machines to crash.
- The design used:
 - 2 MB TCP buffers and 20 parallel streams for each transfer.
 - 2 MB/sec/stream giving rates of 40 MB/s for each file.
 - Tuned with FNAL production netflow analyzer.
- Expectations for this hardware:
 - The current set of hardware combined with the dCache IO yields a maximum rate between 50-60 MB/s for each node.
 - Unit tests using optimized C code can achieve 70-80 MB/s for each node.
 - Therefore, the 40 MB/s per file transfer was deemed acceptable at this point of development
- Much was tried and learned,
 - This challenge provided more rate than some R&E networks currently carry.
 - Did not achieve the best performance levels seen in unit tests
 - Did not investigate whole parameter space
 - · E.g. Did not use large MTU's

Additional Performance Comments

- Reliable running was achieved after several week so of debugging.
- Typically
 - 150 SRMCP's (copies) in queue, each requesting 3-10 files.
 - 6 active gridFTP's/pool
 - 250 350 MB/sec.
- Transfers were submitted; sometimes many dozens would depend on a single node at CERN.
 - This dramatically affected performance, but not reliability.
 - dCache would have used pool-to-pool copy to optimize.
 - It would be beneficial to test with a full storage system at CERN

Results (Functionality)


- FNAL-side SRM mastered the transfers.
 - CERN side provided just GridFTP functionality
 - Result: belief that pull Is better than push.
- Many bugs were identified and fixed over the 1st weeks of the challenge. This was the real goal of the challenge.
 - Properly clean up when xfers were killed
 - Developed a simple system view to understand transfers.
 - Modular updates Make SRM its own .jar
 - Applying priorities properly (service challenge uses v.s. production use)
 - Regulate # of concurrent FTP's independently of # of local accesses (data movement resources are different)
 - Preserve state across crashes, power-downs, failure of pool nodes, Use preserved state to recover where possible.
 - Properly scaling monitoring (SPY)
 - Configuration issues (gridmap files, corrupted certificates).

Grid FTP server transfers

- As a separate test, a special gridftp only script was written.
 - explicitly matched files at CERN with pools here at FNAL to optimize throughput.
- Only 1 file from each disk at CERN was used, (3 per node), possibly leading to some memory caching at CERN.
- Results:
 - Files written to memory at FNAL, provided a rate of 500 MB/s.
 - Files were then written to dCache pool disks (by the GLOBUS COG gridftp Client, not through the dCache), and the rate was 400 MB/s.

50 MB/sec Tape Challenge

- News to the CMS T1 center
 - Seems feasible
- Questions about its definition
 - How long will ingested data be retained?
- 50 MB/sec ~= 5 TB/day
 - FNAL T1 have had many days of 1 TB/day ingest for over a year
 - June production input plot is shown

Summary

- The challenge was a valuable system integration exercise.
- Demonstrated the usability of our systems at throughput which are a factor of 10 greater than prior CMS production use.
 - Achieved routine movements of 20 TB/day
 - Run II production is > 30 TB/day (on LAN)
- The Service challenge found problems in a fairly realistic deployment.
 - Some problems would have likely been missed in a less integrated test.
 - Many of these problems are resolved.