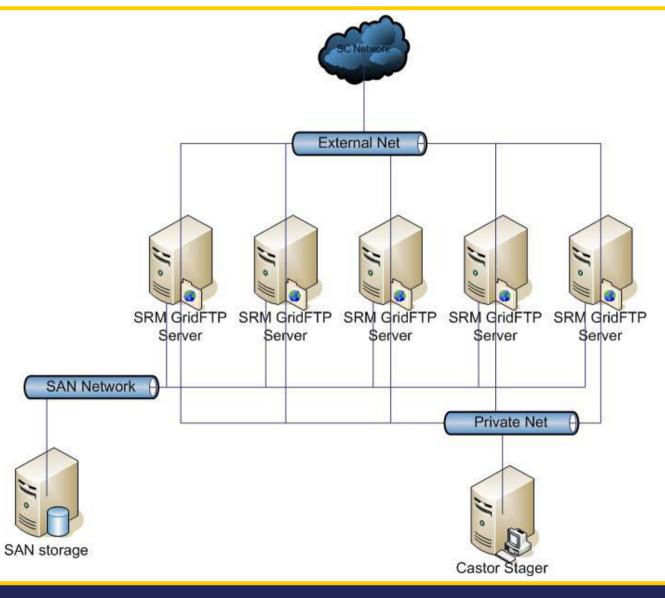


Data Transfer Service Challenge Infrastructure

- Clarify what is expected to be in place to support the service challenges
 - Where are the responsibilities
- Three components:
 - Mass storage systems and their grid interfaces
 - Data transfer infrastructure at a site
 - File transfer service

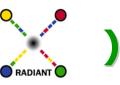
- Interface to storage systems is SRM
 - Tier 1: Local integrations of MSS with SRM (e.g. CASTOR, dCache, etc)
 - Large Tier 2: Either as Tier 1, or large disk pools managed by dCache (or other SRM-enabled cache manager)
- Entirely the responsibility of each site to arrange for this integration

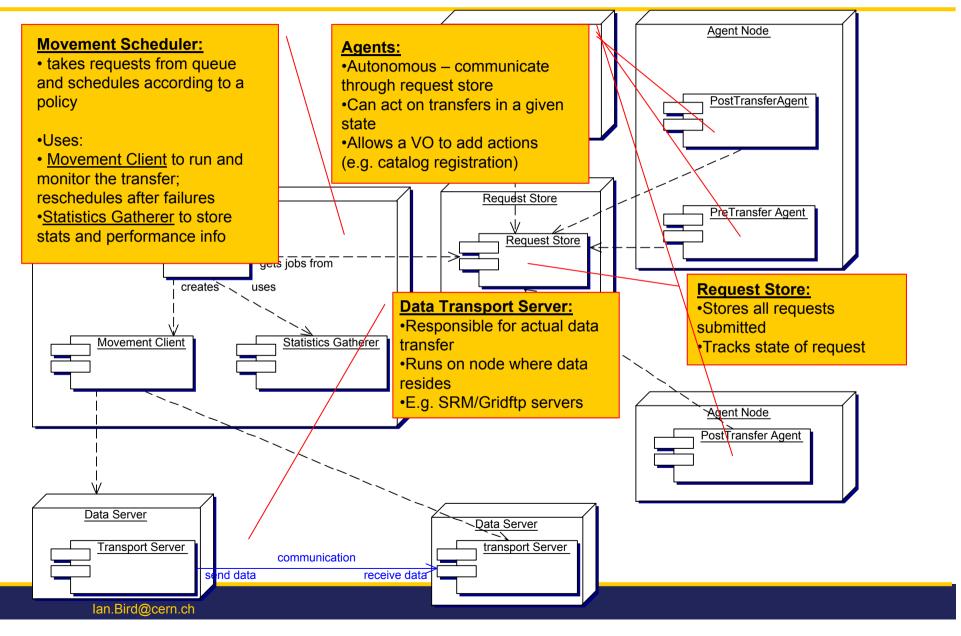


- What is needed to support the data transfer rates anticipated
 - Scaleable transfer service infrastructure disk servers, gridftp servers etc
- Again clearly the responsibility of each Tier 1 to ensure this is in place in a timely fashion
- Examples:
 - CERN infrastructure
 - Ideas for SAN-based infrastructure being prototyped with Taipei

- 10 dual CPU Itanium machines
 - Each has 1Gb connectivity that gets aggregated into a 10Gb switch
 - All nodes run CERN SLC3
 - ~200GB local fast disk 50MB/s single stream per disk
- Configured to run the following services:
 - 5 gridftp servers, non-load balanced
 - A 4-node load-balanced SRM/Gridftp system
 - 1 control node, for running the transfer management software
- Direct connections to external network
 - 10 Gb connection to GEANT
 - 10 Gb link to Chicago (via Starlight)
 - 10 Gb test link to SARA/NIKHEF (via Surfnet)

lan.Bird@cern.ch




- Must foresee 2 sets of data transfer services
 - Service challenge \rightarrow next step up in performance
 - Ongoing service → as each step is demonstrated in the service challenge it should be moved into production
 - The production service continually improves in performance
- Typically at present
 - Expect ~10 transfer nodes to achieve 500 MB/s
 - Multiple requests, multiple files, multiple streams, ...

- Architecture designed with gLite Data Management team
 - Proposal produced July 2004
 - Uses a loosely coupled agent-based model to allow for interaction of different components
- Current Solution
 - Transfers carried out by simple perl-based multi-process daemon
 - Simply wraps globus-url-copy
 - UI/ Web Services submission interface from gLite
 - User interface already what gLite users will see
- Integrated gLite FTS by Spring 2005
 - As the software becomes available, we will try it
 - We need it for the March 2005 Service Challenge
 - Good testbed for gLite currently separate from rest of LCG-2 infrastructure
 - This will be a joint development between GDA and gLite teams

• Personnel

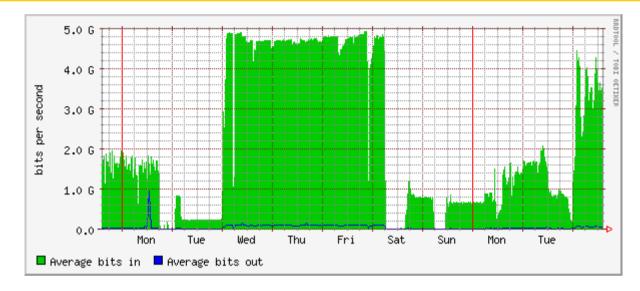
 Jamie Shiers joins Grid Deployment team at CERN with responsibility for Service Challenges

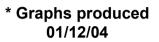
• Communication

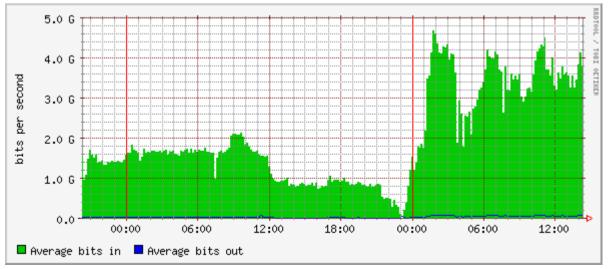
- Website created:
 - http://service-radiant.web.cern.ch/service-radiant/
- Mailing list for CERN service team created
 - service-radiant@cern.ch
 - Single point of contact for any issues related to CERN side of service challenge
 - Hep-forum-wan-tier1@cern.ch
 - List used for dissemination of general information and discussion with Tier-1s about current results and technical issues
 - Does this need to split into two technical and "info" ?

	RAL	Fermilab	Brookhaven	Karlsruhe	IN2P3	CNAF	PIC
1. Network Configuration	Contact	\checkmark	\checkmark	\checkmark	\checkmark	Contact	Contact
2. Storage Configation		\checkmark	\checkmark	\checkmark	\checkmark		
3. Site Tuning							
4. "Service Challenge"		Dec 04		Jan 05			

	Taipei	Nordugrid	TRIUMF	NL	DESY
1. Network Configuration	Contact		Contact	\checkmark	Contact
2. Storage Configation				\checkmark	
3. Site Tuning					
4. "Service Challenge"				Dec 04	


KEY √ = Complete ... = In Progress


lan.Bird@cern.ch



- Tier 1 sites must plan and set up this infrastructure rapidly now
 - Network and Storage setup each take ~ 2 weeks to complete
 - Tuning can take much longer
 - Difficult to work out which layer is causing the problem
 - Systems don't scale linear with number of nodes
- Service Challenges require scheduling of many resources
 - Personnel
 - Network allocation
 - Storage allocation

lan.Bird@cern.ch