Update on 4-Jet Analysis

- PN527 finished for summer conferences 2004
- · remaining open questions:
 - fit range
 - combination of energy points
 - include other 4-Jet sensitive event shapes
 - · Thrust-Minor
 - D-Parameter
- prepare paper draft and publish
- · investigation of BZ-angle distribution

Fit Range

-2.0

 $log_{10}(y_{cut})$

0.2

0.1

-0.1 -0.2

-3.5

-3.0

 $\delta_4({
m y_{cut}})$

ALEPH has smaller systematic error compared to OPAL >Fit range

reduced fit range, starting at higher y_{cut} values decreases sensitivity to x_{μ}

-1.5

(hep-ph/9806317)

Fit Range

- ·fit range now determined by sensitivity on x_{μ} and hadronisation correction
- ·smaller fit range → (slightly) larger statistical error
- ·looser requirement for size of detector correction
 - ·at LEP2 WW BG can be large (> factor 2)
 - ·WW BG evaluated in great detail in systematic error
- additional systematic error by varying fit range by ± 1bin
 - ·average change using 50 MC sub samples
 - ·small additional contribution

old fit range: 0.001-0.178 (LEP1); 0.0004-0.0072 (LEP2) new Fitrange: 0.024-0.042(LEP1); 0.0013-0.0072(LEP2)

Combination of α_s

in PN527:

- *combination of α_{S} within energy point using luminosity weighted average
- *combination to single α_{S} with LEP QCD WG method
- not really coherent

NOW:

- ·LEP QCD WG method for all combinations
- ·minor changes

x_{μ} dependence on α_s

ALEPH determines α_{S} with x_{μ} free

• x_{μ} around 0.7

ALEPH, 0.6 OPAL

•determine α_s dependence on x_u

- •scale x_{μ} at minimum
- >small scale error

Evolution of α_s

New combined value: 0.1193±0.0021

(dominated by LEP1 ~90%)

old: 0.1208±0.0038

ALEPH: 0.1170±0.0013

NLO+NLLA, x_{μ} free

DELPHI: 0.1175 ±0.0030

NLO, x_{μ} free ~0.01

Additional 4-Jet Observables

- investigate further 4-jet observable
 - Thrust-Minor and D-Parameter
- only NLO prediction available, no NLLA
- •perform fit with x_{μ} as free parameter
 - •take 0.5 * x_{μ}^{min} and 2.0 * x_{μ}^{min} as systematic scale uncertainty
- •perform fit with x_{μ} set to 1

Fit looks OK

Fit looks OK

large uncertainties from scale dependence

little sensitivity on α_{S}

combined: α_{s} = 0.1129±0.0232

NOTE: large error

scale set to $x_{\mu}=1$

combined: α_s =0.1452 ±0.0164 (1.6 σ from R₄ value)

Fit looks OK

Fit looks OK

combined: α_S = 0.1048±0.0047 (3.1 σ from R₄ value)

syst. error from scale uncertainty underestimated

scale set to $x_{\mu}=1$

combined: α_{s} = 0.1298±0.0125

Investigations of BZ-Angle

 simulate Bengston-Zerwas Angle distribution using debrecen event generator

following cuts are applied:

 $Y_{34} > 0.012$

 $Y_{45} < 0.006$

 $\cos \theta_{12}$ and $\cos \theta_{34} < 160^{\circ}$

- cuts also applied on Pythia MC
 at detector, hadron and parton level
 calculate corrections
- cuts also applied on data
 correct for detector and hadronisation
 compare with Pythia and debrecen prediction

Investigations of BZ-Angle

invarinat mass of two least energetic jets < 20 GeV

$$\left(\frac{\text{(debrecen-Pythia)}}{\sigma}\right)^2 = 12.3$$

$$\left(\frac{\text{(debrecen-Data)}}{\sigma}\right)^2 = 1.99$$

Investigations of BZ-Angle

invarinat mass of two least energetic jets > 20 GeV

$$\left(\frac{\text{(debrecen-Pythia)}}{\sigma}\right)^2 = 1.19$$

$$\left(\frac{\text{(debrecen-Data)}}{\sigma}\right)^2 = 2.42$$

Investigation of BZ-Angle

Comment:

- •selection of qqqq and qqgg events in debrecen not possible (color factors? C_A / C_F seperation)
- \cdot QCD ntuple from the R₄ analysis used, information on qqqq/qqgg lost
- •variable m_3+m_4 not possible in debrecen since particles are massless
- further investigation, in particular to repeat Analysis, would require big effort

Conclusion

- •four-jet rate analysis refined smaller fit range leading to a smaller error final value: 0.1193 ± 0.0021 evaluate x_{μ} dependence
- ·conversion of the PN in paper soon
- ·analysis of Thrust-Minor and D-Parameter
 - ·no coherent picture
 - include in publication
 - •take R₄ results with a grain of salt...
- ·differences between Debrecen and Pythia parton shower model seen for certain phase space cuts