Single W production (leptonic channel) and TGC's at 189 GeV

Gergely Patay

KFKI RMKI

Budapest University of Technology

Motivation: Anomalous TGC's

Generalized (C, P invariant) Lagrangian:

$$\begin{split} \frac{i}{g^{\text{WWV}}} \mathcal{L}_{\text{eff}}^{\text{WWV}} &= g_1^{\text{V}} \left(W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu} \right) + \\ &+ \kappa_{\text{V}} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda_{\text{V}}}{m_{\text{W}}^2} W_{\rho\nu}^{\dagger} W_{\nu}^{\mu} V^{\rho\nu} \end{split}$$

 $g^{\mathrm{WW}\gamma} = e$, $g^{\mathrm{WWZ}} = e \cot \theta_{\mathrm{W}}$

Assume only WW γ coupling, and set $g_1^Z=0$ fixed:

$$\frac{i}{e}\mathcal{L}_{\rm eff}^{\rm WW\gamma} = \kappa_{\gamma}W_{\mu}^{\dagger}W_{\nu}V^{\mu\nu} + \frac{\lambda_{\gamma}}{m_{\rm W}^2}W_{\rho\nu}^{\dagger}W_{\nu}^{\mu}V^{\rho\nu}$$

$$\mathcal{SM}$$
: $\Delta \kappa_{\gamma} = 1 - \kappa_{\gamma} = 0$, $\lambda_{\gamma} = 0$

Single W production

Main contribution from

where $\ell = e, \mu$ or $\tau \approx 10 - 10\%$

Signal definition at LEP

Only one high energy lepton from the W decay, no other significant activity in the detector

Kinematical cuts in the signal definition:

- >20 GeV energy of the visible lepton
- $|\cos\Theta_{\rm e}| < 0.95$

Main background sources:

- 4 fermions with leptonic final states
- $\ell^+\ell^-$ pair production
- 2 photon reactions
- $\nu \bar{\nu} \gamma$ with converted photon

Monte Carlos

The following MC's were used:

signal	grc4f
4 f	grc4f
Bhabha e ⁺ e ⁻	BHWIDE + TEEGG
$\mu^{+}\mu^{-}, \tau^{+}\tau^{-}$	KK2f
$ uar{ u}(\gamma)$	nunugpv
$qar{q}$	KK2f + PYTHIA
$\gamma\gamma ightarrow$ hadrons	PHOJET + HERWIG
$\gamma \gamma \to e^+ e^-$	Vermaseren
$\gamma \gamma \rightarrow \mu^{+}\mu^{-}, \ \tau^{+}\tau^{-}$	BDK
$\gamma\gamma(\gamma)$	RADCOR

Selection

Re-implement cuts of PN427 with changes of A. Macchiolo (June 2000 Opal Week)

Additional cut at preselection level: all tracks must be in a 35° cone (τ -decay)

Selection results

	μ	е	au
4 f	6.7±0.5	14.2±0.7	9.3±0.6
2 f	0.12±0.5	0.02±0.01	1.1±0.2
$\gamma\gamma$	0.52 ± 0.3	0	0.17±0.1
$ u\bar{\nu}$	0	0.07 ± 0.05	0
\sum_{MC}	7.3±0.8	14.3±0.7	10.6±0.6
MC signal	5.4±0.2	9.4±0.2	6.6±0.2
Data	7	11	6
ε_{sel} (%)	32±3	61±3	43±3
bg contamination (%)	74±8	66±3	62±4

Error shown: only from MC statistics

TGC extraction

Binned Maximum Likelihood fit to

- the total event number,
- event numbers in each leptonic channel,
- E_{lepton} vs. $|\cos\Theta|$ bidimensional distribution: 5–5 bin (0...200 GeV, 0...1)

Poisson distribution is assumed.

Method: MC sample reweighting with REW99

TGC results

	$\Delta \kappa_{\gamma}$	λ_{γ}
\mathcal{SM}	0	0
total event number		
1D	$-0.95^{+0.73}_{-0.73}$	
		$-0.10^{+0.70}_{-0.70}$
2D	$-0.95^{+0.73}_{-0.73}$	$-0.12^{+0.96}_{-0.96}$
family dep.		
1D	$-0.73^{+0.62}_{-0.94}$	
		$-0.09^{+0.72}_{-0.72}$
2D	$-0.73^{+0.62}_{-0.94}$	$0.02^{+0.96}_{-1.15}$
E vs. $ \cos\Theta $		
1D	$0.38^{+0.22}_{-0.36}$	
		$-0.39^{+0.30}_{-0.19}$
2D	?	?

TO DO

- calculate systematical errors
- trigger efficiencies using dilepton samples
- calculate σ
- possibly use other MC generators (WPHACT ?)
- extend to higher energies
- write diploma thesis...