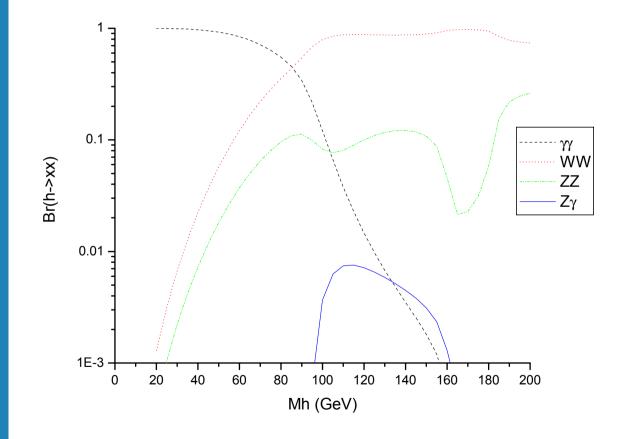

Searching for fermiophobic HIGGS in OPAL data.

What is the femiophobic Higgs.


- Doesn't couple to fermions.
- Couples just to vector bosons.

Higgs production.

- Higgsstruhlung is the main production channel.
- In eejjjj and v_ev_e jjjj vector boson fusion interferes.
- **Three possible final states:**
- ZH->ZWW
- 2. ZH->ZZZ
- **3. ΖΗ->Ζ**γγ
 - We consider first two channels (two photon channel has been considered by the OPAL collaboration already)
 - Each of vector bosons decays into two fermions->6 fermion final state.

Main Signal Channels

Higgs production

The main channels are: (ZWW)->...

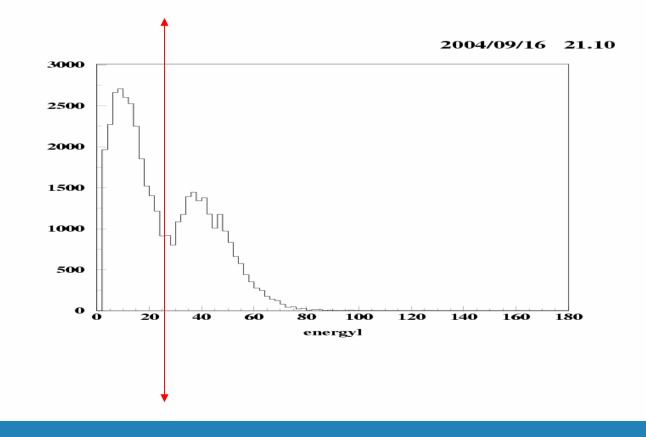
Z->jj channels (multihadronic)

- W->jj;W->jj 6 jet channel
- W->jj;W->lv 4 jets+l+v channel 25.04 events
- W->lv;W->lv 4 jets + 2l channel

26,83 events 5.84 events

Z-> missing energy channels (missing energy)

- W->jj;W->jj **4jet + E_{miss} channel** 9.35 events
- W->jj;W->lv 2jet + I + 3v channel 8.72 events


1 lepton channels

We look at 11 channels:

- Multihadronic channel
- W->jj;W->lv 4 jets+l+v channel 25.04 events
- Missing energy channel
 - W->jj;W->lv **2 jets+l+E_{miss} channel 8.72 event**s

The lepton can come either from on-shell W or from of-shell W^{*}. Of course, those leptons have different energies. So, for each channel we split our analysis into two parts: hard lepton and soft lepton part.

That how it looks.

Our channels

- Our channels:
- 1. 11 multihadronic high pt channel
- 2. 11 multihadronic low pt channel
- 3. 11 missing E high p channel
- 4. 11 missing E low p channel
- 5. 21 multihadronic channel
- 6. 4q missing E channel
- 7. 6q multihadronic channel

Background.

- High multiplicity bg
- 1. 2q

4. YY

- 2. WW->qqIE_{miss};WW->qqqq
- 3. ZZ->qqII; ZZ->qqE_{miss};ZZ->qqqq

11 multihadronic high E channel

- 1. 1 isolated lepton high pt lepton p_l>25GeV
- **2.** P_t >15GeV to reduce $\gamma\gamma$
- 3. Nc>15 to reduce low multiplicity events
- 4. E_{obs}>150GeV to separate from Emiss events
- 5. Y_{23} > 0.25 to ensure at least three jets
- 6. Event is split into three jets. Each of them should contain at least 3 charged tracks. Reduces ττ bg.
- Mw*1.3<mr<150GeV. Where mr is the mass of the system which recoils against lepton. To reduce ZZ and WW bg.
- 8. $P_r < sqrt(\epsilon^2/4 M_w^2) 0.2 * M_w$

11 multihadronic low E channel

- 1. 1 isolated lepton high pt lepton 8<pl<25GeV
- **2.** P_t > 15 GeV to reduce $\gamma\gamma$
- 3. Nc>10 to reduce low multiplicity events
- 4. E_{obs}>150GeV to separate from Emiss events
- 5. Y_{34} >0.15 to ensure at least four jets
- 6. Event is split into three jets. Each of them should contain at least 3 charged tracks. Reduces ττ bg.
- 7. M_r>1.6m_w
- 8. m_{Iv} >10GeV, where m_{Iv} is the invariant mass of the lepton neutrino system. This cut reduces tau bg.

1I missing E high E channel

- 1. 1 isolated lepton high p lepton p_l>25GeV
- **2.** P_t >15GeV to reduce $\gamma\gamma$
- 3. Abs(pz)<40GeV and fw<2GeV and sw<5GeV and gc<5GeV to reduce γγ
- 4. Nc>3
- 5. E_{obs}<85GeV to separate from Emiss events
- 6. M_{W} >0.85m_W where M_{W} is the reconstructed mass of the W boson, assuming signal scenario.
- 7. Event is split into two jets. $E_1/E_2 < 5$, where E_1 and E_2 are jet's energies. To kill events, containing soft leptons misidentified as jets.

11 missing E low E channel

- 1. 1 isolated I low E lepton 3<E_I<25GeV
- **2.** P_t >15GeV to reduce $\gamma\gamma$
- 3. Abs(pz)<40GeV and fw<2GeV and sw<5GeV and gc<5GeV to reduce γγ
- 4. Nc>3
- 5. E_{obs}<120GeV to separate from Emiss events
- 6. $P_r < sqrt(\epsilon^2/4 M_W^2) 0.1 * M_W$
- 7. 10GeV<m_{Iv}<60 GeV, where m_{Iv} stands for the invariant mass of I and v system. Lower cut kills taus. Upper cut kills WW and ZZ bg.
- 8. 0.2-0.1*(m_H-105)<cos(ljj, v)<0.65-0.1**(m_H-105), where cos(ljj, v) stands for the angle between ljj system and the neutrino (assumning signal hypothesis is correct)

OI multihadronic 6 quark channel

- **1. 0 isolated leptons**
- 2. $\langle P_t \rangle > 50$ GeV. Events are spitted into 4 jets. Their average pt should be higher, than 50GeV. Very strong cut, used to kill $\gamma\gamma$ ->4q. Usual usual Pt does not help here because of no missing energy.
- 3. Nc>25 to reduce low multiplicity events
- 4. E_{obs}>180GeV to separate from Emiss events
- 5. Y_{45} >0.25 to ensure at least five jets
- 6. Event is split into three jets. Each of them should contain at least 3 charged tracks. Reduces ττ bg.
- 7. Events are splitted into 5 jets. Look for the pair with invariant mass, closest to Z mass. The difference should be not higher than 15
- 8. After applying step 6, take remaining 3 jets and find the mass closes to that of W. The difference should be less, than 40

OI multihadronic 4 quark channel

- 1. 0 isolated leptons
- 2. P_t>15GeV
- 3. Pz and fw cuts
- 4. Nc>25 to reduce low multiplicity events
- 5. 100<E_{obs}<120GeV to separate from Emiss events
- 6. Mvis>M_w*1.2. The invariant mass of event is Mh for the signal and mw for bg.
- 7. Pvis<sqrt(ecms**2-mw**2)-0.35*mw
- 8. Missing mass>Mz*0.9. To kill ww and ZZ bg.

2I multihadronic 2 quark channel

- 1. 2 isolated leptons
- 2. P_t>10GeV
- **3.** Nc>5 to reduce low multiplicity events
- 4. E_{obs}<180GeV to separate from Emiss events
- 5. E_{I1}>25 and 3GeV<E_{I2}<25GeV. To isolate high and lot energy leptons.
- 6. Pr<sqrt(ecms**2-mw**2)-0.15*mz

Here we are done. Results for each channel for Higgs mass of 105GeV

	High pt	Low pt	High pt	Low pt	6q after	4q after	21 after		
	after cuts	after cuts	after cuts	after cuts	cuts	cuts	cuts	resultsexp	resultsreal
signal	0.74	0.79	0.83	0.49	0.79	1.10	0.25	4.2	2.2
bg	0.14	0.18	0.05	0.09	43.09	0.90	0.00		
data	0.00	0.00	0.00	0.00	50.00	1.00	0.00		

Our and others results:

We: Expected exclusion is at 105.9GeV Observed exclusion is at 108.2GeV (no γγ Study).

OPAL:M_H>105.5 GeV (just $\gamma\gamma$) channel. hep-ex/0212038

? Somebody should combine these two studies: should not be difficult.

A3: Expected exclusion for WW is at 107.5GeV Observed exclusion is at 104.6 GeV hep-ex/0204029

DELPHI: M_H >104.1GeV (just $\gamma\gamma$) channel hep-ex/0406012 Combined $\gamma\gamma$: M_H >109.7 GeV