1. ORACLE STREAMS INTRODUCTION

Oracle streams enables the sharing of data and events in a data stream either within
a database, or from one database to another. This feature provides a lot of
functionality and flexibility for capturing and managing events, and sharing the
events with other databases and applications.

Oracle streams system consists of three main processes:
= Capture changes to database objects from redo log. These changes are placed

in a queue.

= Propagate changes from queue at source database to queue at destination
databases.

= Apply to retrieve changes from the destination queue area and apply to the
database.

REPLICATION using ORACLE STREAMS

Oracle Streams provides the elements to capture, staging, and consumption of
events within the Oracle database which implement flexible replication systems. The
capture mechanism extracts data and structure changes from the redo log and
publishes these updates to the staging area. These changes can be propagated to
one or more remote staging areas where they can be applied at the destination site.
Both the source and destination databases are fully available to end-users for
reading and writing during any replication activity.

Before setting up the streams replication environment, set the following parameters
to the values indicated:
global_names=true
It must be set to true at each database that is participating in the replication
environment.
job_queue_processes=20
It should be set to the same value as the maximum number of jobs that can
run simultaneously plus one.
ag_tm_processes=1
Setting it to 1 or more starts the specified number of queue monitor
processes.
logmnr_max_persistent_sessions=10
This parameter specifies the maximum number of pesistent LOGMINER
mining sessions.
parallel_max_servers=10
parallel_min_servers=2
Specify a value for this parameter to ensure that there are enough parallel
execution servers.
shared_pool_size=150M
It has to be set to at least 100MB.
open_links=4
Specifies the maximum number of concurrent open connections to remote
databases.
log_parallelism=1
This parameter must be set to 1 at each database that captures events.

Furthermore, any database where changes are captured must be running in
ARCHIVELOG mode and make sure that the network is configured so that all
databases in the Streams environment can communicate with each other (modify the
tnsnames.ora file).

Performance tips:
1. Increase the shared_pool_size.

Each capture process requires 10Mb of shared pool. In addition to the
memory required for the capture process, there is an in-memory buffer
queue which holds all of the logical change records (LCRs) for streams
requires memory from the shared pool. The buffer queue memory
requirement is limited to 10% of the memory allocated with the
shared_pool_size parameter.

When the buffer queue memory threshold is exceeded, LCRs will spill-over
to disk and continue to spill to disk until all transactions have been
consumed by all down-streams sites. When this spill-over occurs, streams
performance is impacted.

As of 9.2.0.5, the percentage of shared_pool_size can be modified with
the hidden parameter _first_spare_parameter.

In Oracle 10g, this parameter will have no effect as Streams memory can
be explicitly specified with the streams_pool_size initialization parameter.

2. For bi-directional replication, configure two queues to minimize spill-over
from buffer queue to disk.

When configuring bi-directional replication, another technique for
minimizing spill-over to disk is to configure two queues at each site: one
queue for capturing local changes, and a second queue to hold the
changes from other sites.

3. To reduce the propagation lag, set the hidden initialization parameter
_job_queue_interval to 1.

2. STREAMS SETUP

Replication using Streams overview:

The first step is setting up the user and creating queues and databases links for the
streams replication environment.

The capture process uses Log Miner to capture changes that are recorded in the redo
log. LogMiner tables include data dictionary tables and temporary tables. By default,
all LogMiner tables are created to use the SYSTEM tablespace, but it may not have
enough space to accommodate the LogMiner tables. Therefore, creating an alternate
tablespace for them is recommended.

To manage a streams environment, either create a new user with the appropriate
privileges (these privileges enable him to manage queues, create rule sets, create
rules and monitor the streams environment) or grant these privileges to an existing
user.

The next step is to configure the streams environment to share information between
databases.

To use one or more apply processes to apply LCRs captured by a captured process, it
is necessary to enable supplemental logging at the source database. Supplemental
logging places additional data into a redo log whenever an update operation is
performed. The capture process captures this additional information and places it in
LCRs.

Once the capture process is created, the sites must be configured to apply those
changes.

Also, the propagation job must be configured and scheduled to propagate events
(DML and DDL changes) in the schema from the source queue to the destination
gueue.

Note: If you share a sequence at multiple databases, sequence values used for
individual rows at these databases may vary. Also, changes to actual sequence
values are not captured. For example, if a user references a NEXTVAL or sets the
sequence, the capture process does not capture changes resulting from these
operations.

2.1 ADDING NEW DATABASE TO A MULTIPLE SOURCE ENVIRONMENT

Note: Make sure the "strmuser” schema is created before starting with the script.

-- at site “new site”
-- create alternate tablespace for the LogMiner tables

-- connect as sysdba

connect /as sysdba

CREATE TABLESPACE logmntrs DATAFILE 'klocation>/logmnrtsOl.dbf'
SIZE 1M AUTOEXTEND ON NEXT 2M MAXSIZE 500m;

EXECUTE DBMS_LOGMNR D.SET TABLESPACE ('logmntrs') ;

-- create the streams administrator user
CREATE USER strmadmin IDENTIFIED BY strmadmin;

-- grant privileges

GRANT DBA, AQ ADMINISTRATOR ROLE to STRMADMIN;
GRANT SELECT ANY DICTIONARY TO STRMADMIN;

GRANT EXECUTE ON sys.dbms_ag TO STRMADMIN;

GRANT EXECUTE ON sys.dbms_agadm TO STRMADMIN;

GRANT EXECUTE ON sys.dbms_flashback TO STRMADMIN;
GRANT EXECUTE ON sys.dbms_streams_adm TO STRMADMIN;
GRANT EXECUTE ON sys.dbms_capture_adm TO STRMADMIN;
GRANT EXECUTE ON sys.dbms apply adm TO STRMADMIN;
GRANT EXECUTE ON sys.dbms_rule adm TO STRMADMIN;
GRANT EXECUTE ON sys.dbms propagation adm TO STRMADMIN;
GRANT SELECT CATALOG ROLE TO STRMADMIN;

BEGIN
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'ENQUEUE_ANY',

grantee => 'STRMADMIN',
admin_option => FALSE);

END;

/

BEGIN

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'DEQUEUE ANY',
grantee => 'STRMADMIN',
admin option => FALSE);

END;

/

BEGIN

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'MANAGE ANY',
grantee => 'STRMADMIN',
admin option => TRUE) ;

END;

/

BEGIN

DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
privilege => DBMS_RULE ADM.CREATE EVALUATION_ CONTEXT_OBJ,
grantee => 'STRMADMIN',

grant_option => TRUE) ;
DBMS RULE ADM.GRANT SYSTEM PRIVILEGE (
privilege => DBMS_RULE ADM.CREATE RULE_SET OBJ,
grantee => 'STRMADMIN',
grant option => TRUE) ;
DBMS_RULE_ADM.GRANT SYSTEM PRIVILEGE (

privilege => DBMS RULE ADM.CREATE RULE OBJ,
grantee => 'STRMADMIN',
grant_option => TRUE) ;

END;

/

BEGIN

DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
privilege => DBMS RULE ADM.CREATE ANY RULE SET,
grantee => 'STRMADMIN',

grant option => TRUE) ;
DBMS_ RULE_ADM.GRANT_ SYSTEM PRIVILEGE (
privilege => DBMS RULE ADM.ALTER ANY RULE SET,
grantee => 'STRMADMIN',
grant_option => TRUE) ;
DBMS_ RULE_ADM.GRANT_ SYSTEM PRIVILEGE (
privilege => DBMS RULE ADM.EXECUTE ANY RULE SET,
grantee => 'STRMADMIN',
grant option => TRUE) ;
DBMS_RULE_ADM.GRANT SYSTEM PRIVILEGE (
privilege => DBMS_RULE ADM.CREATE ANY RULE,
grantee => 'STRMADMIN',
grant option => TRUE) ;
DBMS_ RULE_ADM.GRANT_ SYSTEM PRIVILEGE (
privilege => DBMS_RULE_ADM.ALTER ANY RULE,
grantee => 'STRMADMIN',
grant_option => TRUE) ;
DBMS RULE ADM.GRANT SYSTEM PRIVILEGE (
privilege => DBMS RULE ADM.EXECUTE ANY RULE,
grantee => 'STRMADMIN',

grant_option => TRUE) ;
END;
/

-- create the streams queues at site “new site”
-- connect to site “new site” as user strmadmin
CONNECT strmadmin/strmadmine@
BEGIN
DBMS STREAMS ADM.SET UP_ QUEUE (
queue table => 'STREAMS QUEUE TABLE CA',
queue name => 'STREAMS QUEUE CA',
queue_user => 'STRMADMIN') ;
END;
/
BEGIN
DBMS_ STREAMS ADM.SET UP_QUEUE (
queue_table => 'STREAMS QUEUE TABLE AP',
queue_name => 'STREAMS QUEUE_AP',
queue_user => 'STRMADMIN') ;
END;
/

-- create a database link to the source database in the Streams
environment

CREATE DATABASE LINK rlsl.cern.ch CONNECT TO strmadmin IDENTIFIED
BY strmadmin USING 'rlsl.cern.ch';

-- at site rlsl.cern.ch

-- create a database link to the new destination
database

-- connect to sgsite rlsl.cern.ch as user strmadmin
connect strmadmin/strmadmin@rlsl.cern.ch

CREATE DATABASE LINK <link name new site> connect to
STRMADMIN identified by strmadmin using
<service name new site>;

-- at site “new site”

-- create the capture process

-- connect to site “new site” as user strmadmin

connect strmadmin/strmadmine@

-- add capture rules for the schema (the new database is a source

database)

BEGIN

DBMS_STREAMS ADM.ADD SCHEMA RULES (
schema_name => 'STRMUSER',
streams_type => 'CAPTURE',
streams_name => 'STRMADMIN CAPTURE',
queue_name => 'STRMADMIN.STREAMS QUEUE_CA',
include dml => true,
include ddl => true,

source_database => KHew site(databaselglobal name)s) ;

END;

/

DECLARE
iscn NUMBER; -- Variable to hold instantiation SCN wvalue
BEGIN
iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@RLS1.CERN.CH(
source_schema name => 'STRMUSER',
source_database_name => SHewlsite(databaselglicbalinams)s,
instantiation_ scn => &iscn) ;
END;
/

-- create the apply process for each source database
-- add apply rules for the schema at the destination database
BEGIN
DBMS_STREAMS ADM.ADD SCHEMA RULES (
schema name => 'STRMUSER',
streams_type => 'APPLY',
streams_name => 'STRMADMIN APPLY',
queue_name => 'STRMADMIN.STREAMS QUEUE AP',
include_dml => true,
include_ddl => true,
source_database => EHew/site(databaselglobaliname)s) ;
END;

/

-- specify an apply user

BEGIN

DBMS_APPLY ADM.ALTER APPLY (
apply name => 'STRMADMIN APPLY',
apply user => 'STRMUSER') ;

END;
/
-- grant the user execute privilege on the apply process rule set
DECLARE

rs_name VARCHAR2 (64) ; -- variable to hold rule set name
BEGIN

SELECT RULE SET OWNER||'.'||RULE_SET NAME

INTO rs_name

FROM DBA_APPLY

WHERE APPLY NAME='STRMADMIN APPLY';
DBMS_RULE_ADM.GRANT_OBJECT PRIVILEGE (

privilege => SYS.DBMS RULE ADM.EXECUTE ON RULE_SET,
object name => rs name,
grantee => 'STRMUSER') ;

END;

/

-- grant the appropriate privileges to perform DDL changes to the
apply user

-- at site rlsl.cern.ch

-- add apply rules to apply the changes of new
database
-- connect to site rlsl.cern.ch as user strmadmin
connect strmadmin/strmadmin@rlsl.cern.ch
BEGIN
DBMS_ STREAMS ADM.ADD SCHEMA RULES (

schema name => 'STRMUSER',

streams type => 'APPLY',

streams name => 'STRMADMIN APPLY <NEW>',

queue name => 'STRMADMIN.STREAMS QUEUE AP',

include dml => true,

include ddl => true,

source_ database =>

<new_site (database global name)>);

END;

/

-- at site “new site”

-- add propagation rules for the schema at “new site”

-- connect to site “new site” as user strmadmin

connect strmadmin/strmadmincSHew sites

BEGIN

DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
schema name => 'STRMUSER',
streams name => 'STRMADMIN PROPAGATE',
source_queue_name => 'STRMADMIN.STREAMS QUEUE CA',
destination gqueue name =>

'STRMADMIN.STREAMS QUEUE AP@RLS1.CERN.CH',

include_dml => true,

include_ddl => true,

source_database -> KHewlsite(databaselglobaliname)s) ;
END;
/

-- at site rlsl.cern.ch
-- configure propagation from source to new
destination database
-- connect to site rlsl.cern.ch as user strmadmin
connect strmadmin/strmadmin@rlsl.cern.ch
BEGIN
DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
schema name => 'STRMUSER',
streams_name => 'STRMADMIN PROPAGATE <NEW>',
source_ queue name =>
'STRMADMIN.STREAMS QUEUE CA',
destination queue name =>
' STRMADMIN.STREAMS QUEUE APeknew sites,
include dml => true,
include ddl => true,
source_database => 'RLS1.CERN.CH') ;
END;
/

In different window, export the schema at risl.cern.ch that will be instantiated at
testadd.cern.ch.

exp strmuser/strmuser@RLS1.CERN.CH FILE=schema_strmuser.dmp
GRANTS=y ROWS=n LOG=exportSchema.log OBJECT_CONSISTENT=y
INDEXES=y STATISTICS=none

Then, transfer the export dump file schemas.dmp to the destination database and
import it to instantiate the tables at the destination database.

imp strmuser/strmuser@znew_site> FILE=schema_strmuser.dmp IGNORE=y
ROWS=n COMMIT=y LOG=importSchema.log STREAMS_INSTANTIATION=y

Before starting the capture and apply processes, check that the source site
(rlsl.cern.ch) complete the appropriate steps (shadow code).

-- at site “new site”
-- connect to “new site” as user strmadmin
connect strmadmin/strmadmin@<new site>

-- start the apply process

BEGIN

DBMS_APPLY ADM.SET PARAMETER (
apply name => 'STRMADMIN APPLY',
parameter => 'DISABLE ON_ERROR',
value => 'N');

END;

/

BEGIN

DBMS_APPLY ADM.START APPLY (
apply name => 'STRMADMIN APPLY');

END;

/

-- at site rlsl.cern.ch
-- connect to site rlsl.cern.ch as user strmadmin
connect strmadmin/strmadmin@rlsl.cern.ch

-- start the apply process

BEGIN

DBMS APPLY ADM.SET PARAMETER (
apply name => 'STRMADMIN APPLY <NEW>',
parameter => 'DISABLE ON ERROCR',
value => 'N');

END;

/

BEGIN

DBMS_ APPLY ADM.START APPLY (
apply name => 'STRMADMIN APPLY <NEW>');

END;

/

-- at site “new site”
-- connect to “new site” as user strmadmin
connect strmadmin/strmadmin@<new sites

-- start capture process
BEGIN
DBMS CAPTURE_ADM.START CAPTURE (
capture name => 'STRMADMIN CAPTURE') ;
END;
/

2.2 DISABLING REPLICATION

To disable the replication between the two databases, the capture process must be
stopped and the propagation must be disabled, both at source database and then the
apply process must be stopped at destination database.

-- connect as strmadmin user
-- stop an existing capture process at source database
BEGIN
DBMS CAPTURE_ADM.STOP_CAPTURE (
capture name => 'STRMADMIN CAPTURE CA');
END;
/
-- stop a propagation job at source database
BEGIN
DBMS_AQADM.DISABLE PROPAGATION_ SCHEDULE (
queue name => 'STRMADMIN.STREAMS QUEUE',
destination => <destination database_link>);
END;
/
-- stop an existing apply process at destination database
BEGIN
DBMS_APPLY ADM.STOP_APPLY (
apply name => 'STRMADMIN APPLY');
END;
/

-- stop queues
BEGIN
DBMS_ AQADM.STOP_QUEUE (queue name => 'STREAMS QUEUE CA');
DBMS AQADM.STOP_QUEUE (queue_name => 'STREAMS QUEUE AP') ;
END;
/

2.3 RE-ENABLING REPLICATION

Following the next steps to enable the replication: restarting the apply process at
destination database, enabling the propagation at source database and, finally,
restarting the capture process at source database too.

-- connect as strmadmin user
-- start queues
BEGIN
DBMS AQADM.START QUEUE (queue name => 'STREAMS QUEUE CA');
DBMS AQADM.START QUEUE (queue name => 'STREAMS QUEUE AP');
END;

/

-- start the apply process
BEGIN
DBMS APPLY ADM.START APPLY (
apply name => 'STRMADMIN APPLY');
END;
/
-- enable propagation at destination database
BEGIN
DBMS_AQADM.ENABLE PROPAGATION SCHEDULE (
queue_name => 'STRMADMIN.STREAMS QUEUE',
destination => <destination database_link>);
END;
/
-- start the capture process
BEGIN
DBMS CAPTURE_ADM.START CAPTURE (
capture name => 'strmadmin capture');
END;
/

2.4 RECOVERING FROM FAILURES

Streams replicas can be open to read/write operations at all times. If a primary
database fails, services that were using the failed database can connect to Streams
replicas, assuming all data is replicated.

It is important to ensure that propagation continues to function after a failure of a
database. A propagation job will retry the database link after a failure until the
connection is re-established.

If the capture process was running at the time of the failure, there is no need to
restart the capture process. The same happens with the apply process, it will
automatically return to the state it was in at the time of the failure.

For events to be propagated from a source queue, a propagation job must run on the
instance owning the source queue. If the event cannot be propagated to a specific
destination queue for some reason (such as a network problem), the event will
remain in the source queue until the problem will be solved. Then the captured event
will be propagated to the destination queue and the apply process will apply the
change at destination database.

3. REFERENCES

[1] Oracle Streams Replication Administrator's Guide 10g Release 1 (10.1)
http://download-west.oracle.com/docs/cd/B13789 01/server.101/b10728/toc.htm

[2] Oracle Streams Concepts and Administration 10g Release 1 (10.1)
http://download-west.oracle.com/docs/cd/B13789 01/server.101/b10727/toc.htm

[3] Database Administrator’s Guide

http://download-
uk.oracle.com/docs/cd/A91202 01/901 doc/server.901/a90117/toc.htm

[4] PL/SQL User’s Guide and Reference
http://download-
uk.oracle.com/docs/cd/A91202 01/901 doc/appdev.901/a89856/toc.htm

[5] Oracle Streams--Simplifying Information Sharing in Oracle Database 10g -
Patricia McElroy
http://download.oracle.com/owsf 2003/40208 McElroy.doc

http://download.oracle.com/owsf 2003/40208 McElroy.ppt

