Searching for Higgs Triplets at CDF

Chris Hays, Duke University

Tev4LHC Higgs Workshop Dec 14, 2004

Why Higgs Triplets?

Natural expansion of Higgs sector

* frequently arise in models with
additional gauge groups

Little Higgs
Increases scale of
divergences by ~10

Left-right symmetric $(SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c)$ Restore parity symmetry to weak force at scale v_R See-saw mechanism for light v masses

* Excellent reference model for searches

Scenarios with Light Higgs Triplets

Non-supersymmetric left-right models

n-supersymmetric left-right models * Triplet masses typically proportional to v_R $\begin{pmatrix} H_R \\ H_R \end{pmatrix}$ $\begin{pmatrix} H_L \\ H_L \end{pmatrix}$

If
$$v_R \approx 1 \text{ TeV}$$
:

- Triplets could be observable at CDF
- Simplest see-saw mechanism not valid (but could still apply: e.g. add sterile neutrinos)

If
$$v_R \gg 1$$
 TeV:

- Observable triplets requires scalar potential parameter tuning
- See-saw mechanism applicable

Scenarios with Light Higgs Triplets

Supersymmetric left-right models

- * Minimal model requires low $v_R \approx 1 \text{ TeV}$, R-parity violation
- * Considering nonrenormalizable (NR) terms in the superpotential allows for potential minimum with *R*-parity conservation

 Lead to light doubly-charged Higgs: $m_{_{H++}} \approx (v_{_{R}}^{^{2}}/M_{_{Pl}})$
- * Additional triplets with B-L=0 can also result in R-parity conservation Lead to light doubly-charged Higgs with no lepton couplings

For seesaw
$$v_R \sim 10^{10}$$
 GeV, $m_{H\pm\pm} \sim 100$ GeV

Gauge-mediated SUSY breaking:

• Light $\widetilde{H}_{R}^{\frac{++}{2}}$

Gravity-mediated SUSY breaking:

• Light H_R^{++}

 $p\bar{p}$ production cross section dominated by Z/γ exchange

- * Completely determined by weak coupling
- * W Higgstrahlung cross section depends on v_L , constrained by the ρ parameter to be small

Expect $H^{\pm\pm}$ to decay exclusively to leptons

- * No quark couplings due to charge conservation
- * $W^{\pm}W^{\pm}$ decay constrained by ρ parameter

$$\mathcal{L}_{Y} = ih_{ij}(\overline{\Psi}_{Li}^{c} \tau_{2} H_{L} \Psi_{Lj} + \overline{\Psi}_{Ri}^{c} \tau_{2} H_{R} \Psi_{Rj}) \leftarrow Violates lepton number; new quantum number: B-L$$

Search for H^{±±} decays to ee, $\mu\mu$, $e\mu$

- * Extremely clean signatures
- * Only require one *ll'* pair/event
- * Excellent discovery potential

Low-mass background dominated by hadrons → leptons

Use $m_{ll'}$ < 80 GeV region to test background prediction

Signature	Background	Data
μμ	0.8 ± 0.4	0
$e\mu$	0.4 ± 0.2	0
ee	1.1 ± 0.4	1

Test hadron—lepton predictions using low \cancel{E}_{T} (<15 GeV) same-sign events with one lepton failing identification criteria

Sample dominated by dijet events

Signature	Background	Data
μμ	7.6 ± 3.1	8
$e\mu + \mu e$	2.4 ± 0.8	2
eę⁄	54 ± 21	63

Same sign *ee* channel complicated by bremstrahlung in silicon detector

- * Bremstrahlung can convert to two electrons, one of which has the opposite sign of the prompt electron
- * Can result in wrong sign identification

Drell-Yan a significant background Search only in region $m_{ee} > 100 \text{ GeV}$

Luminosity and acceptance key to sensitivity

* <1 event background means cross section limit is directly proportional to luminosity and acceptance

Very high acceptances!

μμ: Trigger muon has limited $|\eta|$ (<1), ϕ coverage, second muon has large coverage ($|\eta|$ < ~1.4, all ϕ).

ee: Both electrons have large ϕ coverage, but limited $|\eta|$ (<1). Falls rapidly for m<100 GeV due to cut-off

*e*μ: Combination of limited electron and muon coverage reduces acceptance relative to *ee* and μμ.

L ~ 240 pb-1: Largest sample of any published Tevatron result!

No events observed in signal regions

Set 95% C.L. cross section x BR limits

Assuming exclusive decays to a given channel, set mass limits:

$$H_L^{\pm\pm} \longrightarrow \mu\mu$$
: $m > 136 \text{ GeV}$
 $H_L^{\pm\pm} \longrightarrow e\mu$: $m > 115 \text{ GeV}$
 $H_L^{\pm\pm} \longrightarrow ee$: $m > 133 \text{ GeV}$
 $H_L^{\pm\pm} \longrightarrow \mu\mu$: $m > 113 \text{ GeV}$

For diagonal couplings of equal magnitude, results correspond to the following approximate limit:

$$H_{L}^{\pm \pm}$$
: $m > 120 \text{ GeV}$

Mass limits highest in the world for $H_L^{\pm\pm}$ in these channels

* Sensitive to a wide range of Yukawa coupling values

$$10^{-5} < \sum h_{ij} < 0.5$$

Complementary to indirect searches

 h_{ij} limits for m = 100 GeV:

Bhabha scattering: $h_{ee} < 0.05$

$$(g-2)_{\mu}$$
: $h_{\mu\mu} < 0.25$

$$\mu \rightarrow 3e$$
: $h_{ee}h_{eu} < 3.2 \times 10^{-7}$

$$\mu \rightarrow e\gamma$$
: $h_{uu}h_{eu} < 2 \times 10^{-6}$

D. Acosta et al., PRL 93 (2004), 221802

CDF has also searched for quasi-stable H^{±±}

* Probes low Yukawa coupling values

$$\sum h_{ij} < 10^{-8}$$

Strategy:

- *Use dE/dx information from tracker*
- Search for pairs of high-momentum doubly-charged tracks
- Define tight "discovery" selection including calorimeter ionization

Couplings don't exist for additional triplets that conserve lepton number

dE/dx resolution provides many σ separation of signal and background

Background < 10⁻⁵

• Single-event discovery!

Signal confirmation defined a priori

- Require large MIP energy in calorimeter
- Further suppresses muon backgrounds

Backgrounds studied with data and MC

Background	dE/dx only	dE/dx + MIP	No candidates in samples used to
$Z \rightarrow \mu\mu$	$< 10^{-6}$	$< 10^{-12}$	determine acceptance
$Z \rightarrow ee$	$< 10^{-6}$	$< 10^{-7}$	
$Z \rightarrow \tau \tau$	< 10 ⁻⁹	< 10 ⁻⁹	Yields upper limits on expected
Dijets	< 10 ⁻⁵	< 10 ⁻⁶	background

Acceptance has additional inefficiencies and uncertainties (beyond $\mu\mu$)

- * Fraction of $H^{\pm\pm}$ with β too small to reconstruct tracks
- * Multiple scattering affecting track matching to muon track segment
- * Ionization affecting calorimeter isolation requirements

Acceptance reduced relative to μμ:

- * Both H^{±±} must be central, with reconstructed tracks
- * Additional track cuts and inefficiencies
- * *Still* > *30*%

 $\mathcal{L} \sim 200 \ pb$ -1

No events observed in data

Set 95% C.L. cross section limit

Infer mass limits:

$$H_{I}^{\pm \pm}$$
: $m > \sim 125 \ GeV$

$$H_{R}^{\pm \pm}$$
: $m > \sim 100 \text{ GeV}$

Left and right cross sections combined

Limits similar to µµ and ee decay channels

Sensitivity will improve with order of magnitude increase in luminosity:

$$H_{I}^{\pm \pm}$$
: $m \sim 200 \; GeV$

$$H_R^{\pm\pm}$$
: $m \sim 170 \text{ GeV}$

Ongoing H^{±±} Search at CDF

Same-sign tau decays

Experimentally challenging:

- * Cannot fully reconstruct invariant mass
- * Hadronic tau decays difficult to detect

Phenomenologically interesting:

* $h_{\tau\tau}$ coupling the least constrained

Many problems solved in $H^0 \rightarrow \tau \tau$ search:

Studying issues of sign identification

Determining backgrounds for same-sign sample

Other Possible Triplet Searches at CDF

H^{\pm} :

- * Experimentally accessible
- * No quark couplings if no mixing with Higgs doublet

Same final state as $H^0 \rightarrow WW$ search

CDF Run II Preliminary, L int ≈ 200 pb⁻¹

Can reoptimize for leptons from H[±] decays

NLO cross section would help in full analysis

Other Possible Triplet Searches at CDF

$\widetilde{H}^{\pm\pm}, \widetilde{H}^{\pm}$:

- * Existing searches have sensitivity
- * Signatures depend on NLSP

$$\chi_{l}^{0}: \widetilde{H}^{\pm\pm} \longrightarrow \widetilde{l}l' \longrightarrow l\widetilde{\chi}_{l}^{0}l' \longrightarrow l\chi^{0}\gamma\chi^{0}l' \qquad \widetilde{l}l'$$

$$Final\ state\ lll'l'\gamma\gamma \not\!\!\!E_{T} \qquad \widetilde{l}l' \longrightarrow l\chi^{0}l' \qquad \widetilde{l}l' \longrightarrow l\chi^{0}l' \longrightarrow l\chi^{0}$$

$$\begin{split} \widetilde{H}^{\pm} & \longrightarrow l \chi_{l}^{0} \vee \longrightarrow l \chi^{0} \gamma \chi^{0} \vee \\ Final \ state \ ll \gamma \gamma \not E_{T} \\ \widetilde{H}^{\pm} & \longrightarrow l \vee \longrightarrow l \chi^{0} \vee \\ Final \ state \ ll \not E_{T} \end{split}$$

Need to validate MC generators, use for optimization and acceptance determination

NLO cross section would help

Summary

Higgs triplets a likely component of non-SM Higgs sector

Arise in well-motivated models

Doubly-charged Higgs searches particularly attractive

- Accessible to colliders in a number of scenarios
- Extremely clean signatures: excellent discovery potential

CDF has world's highest mass limits for long-lived $H^{\pm\pm}$ and decays to ee, e μ , $\mu\mu$

- Ongoing data-taking will significantly extend sensitivity
- Still early in Run 2!

Potential for a range of additional triplet searches

• Need to determine sensitivity (cross sections, acceptances)