The Invisible Higgs at the LHC

Heather Logan (UW Madison)

TeV4LHC Higgs Working Group meeting December 14, 2004

Why an invisible Higgs?

The SM Higgs is very narrow for $m_h \lesssim 160$ GeV.

If the Higgs couples with electroweak strength to a neutral (quasi)stable particle (e.g., dark matter) with mass $< m_h/2$, then $h \rightarrow \text{invisible}$ can be the dominant decay mode.

- $h \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ in MSSM, NMSSM
- ullet h o SS in simple models of scalar dark matter
- $h \rightarrow KK$ neutrinos in extra dimensions
- $h \rightarrow \text{Majorons}$

• . . .

Existing studies:

LHC:

- ullet WBF $ightarrow h_{inv}$ Eboli & Zeppenfeld
- $Z + h_{inv}$ Frederiksen, Johnson, Kane & Reid

Tevatron:

• $Z + h_{inv}$ Martin & Wells

We studied:

- $Z + h_{inv}$ at LHC: revisited (this talk)
- WBF at Tevatron (Hooman's talk)
- $h_{inv} + j$ at LHC, Tevatron (overwhelmed by background)

Associated $Z + h_{inv}$ production at LHC

Higgs decays invisibly; look for $Z \rightarrow$ leptons.

Signal is
$$\ell^+\ell^- p_T (\ell = e, \mu)$$

Major backgrounds:

- $Z(\to \ell^+\ell^-)Z(\to \nu\bar{\nu})$
- $W(\to \ell^+ \nu) W(\to \ell^- \bar{\nu})$
- $Z(\rightarrow \ell^+\ell^-) + j$ with fake p_T

We simulated the $Z + h_{inv}$ signal and the ZZ and WW backgrounds using Madgraph.

The Z+j background with fake p_T comes from Z+j events in which the jet(s) are missed: either they are too soft or they go down the beampipe. We took results for this background from Frederiksen, Johnson, Kane & Reid.

Cuts:

We start with some "minimal cuts":

$$p_T(\ell^{\pm}) > 10 \text{ GeV}, \qquad |\eta(\ell^{\pm})| < 2.5, \qquad \Delta R(\ell^+\ell^-) > 0.4$$

The leptons in the signal reconstruct to the Z mass. The WW background can be largely eliminated by a Z mass cut:

$$|m_{\ell^+\ell^-} - m_Z| < 10 \text{ GeV}$$

The leptons from the WW background also tend to be back-to-back; this background can be further reduced with an angular cut:

$$\Delta \phi_{\ell+\ell-} < 2.5$$

This cut also eliminates Drell-Yan with mismeasured ℓ^{\pm} energy.

Final cut is on ψ_T :

- p_T of WW background tends to be soft, since it comes from the neutrinos in two independent W decays.
- p_T of ZZ background is softer than signal: ZZ is t-channel while $Z + h_{inv}$ is s-channel.
- p_T of Signal increases with m_h .

Z+j background with fake p_T :

Fake p_T due to missed jets — too soft or too large rapidity \rightarrow escape the jet veto

Proper treatment for modern ATLAS/CMS design requires detector simulation — beyond the scope of our study.

Was studied in Frederiksen, Johnson, Kane & Reid (1994) for various p_T cuts and rapidity coverage of hadronic calorimeter \rightarrow we adapt their results for our study.

What's new:

- With $\Delta R(\ell^+\ell^-) > 0.4$, we have larger lepton acceptance by a factor of 1.6 than Frederiksen, Johnson, Kane & Reid (who used $\Delta R(\ell^+\ell^-) > 0.7$)
- → better statistics with same luminosity.
- We consider higher p_T cuts
- → improves background rejection
- ullet We include WW background: can be important.

Results (LHC, $ee + \mu\mu$)

 $m_h = 120$ GeV, 10 fb^{-1} (parentheses: includes Z + j background)

	S	B(ZZ)	B(WW)	B(Z+j)	S/B	S/\sqrt{B}
$p_T > 65 \text{ GeV}$	14.8 fb	48.0 fb	10.6 fb	22 fb	0.25 (0.18)	6.1 (5.2)
$p_T > 75 \text{ GeV}$	12.8 fb	38.5 fb	4.3 fb	9 fb	0.30 (0.25)	6.2 (5.6)
$\not p_T$ $>$ 85 GeV	11.1 fb	30.9 fb	1.8 fb		0.34	6.1
$p_T > 100 \text{ GeV}$	8.7 fb	22.1 fb	0.6 fb		0.38	5.8

 $m_h = 120 \text{ GeV}$: $> 5\sigma \text{ signal with } 10 \text{ fb}^{-1}$.

	S/\sqrt{B}	(30 fb^{-1})	
	$m_H = 120$	140	160 GeV
$p_T > 75 \text{ GeV}$	10.7 (9.7)	7.9 (7.2)	5.9 (5.3)
$p_T >$ 85 GeV	10.6	7.9	6.0
$\not\!p_T >$ 100 GeV	10.0	7.8	6.1

With 30 fb⁻¹, 5σ discovery extends out to $m_h=160$ GeV.

Uses for $Z + h_{inv}$

- WBF $\rightarrow h_{inv}$ was studied before [Eboli & Zeppenfeld] and gives better significance $(S/\sqrt{B} \simeq 24 \text{ for } m_h = 120 \text{ GeV}$ and 10 fb⁻¹).
- \rightarrow $Z+h_{inv}$ can add to the signal significance improve (slightly) precision of invisible branching fraction measurement.
- Mass of invisibly-decaying Higgs accessible only through production process.
- \rightarrow $Z+h_{inv}$ cross section falls faster with m_h than WBF more m_h dependence but less statistics.
- ightarrow To extract m_h from a single cross section relies on SM assumption for production couplings.

Ratio of $Z + h_{inv}$ and WBF rates \rightarrow more model-independent m_h extraction:

 $Z+h_{inv}\sim hZZ$ coupling; WBF $\sim hWW, hZZ$ couplings – related by SU(2) in models with only Higgs doublets/singlets.

 $\rightarrow p_T$ distribution in $Z + h_{inv}$ may give slight sensitivity to m_h .

Conclusions

- $Z+h_{inv}$ is a promising channel at the LHC 10 fb $^{-1}\to>5\sigma$ for $m_h=120$ GeV 30 fb $^{-1}\to>5\sigma$ for m_h up to 160 GeV
- Adds (slightly) to signal significance of WBF channel studied previously
- ullet Signal cross section (and p_T distribution?) gives another handle on m_h Combining with WBF allows more model-independent m_h extraction

Future direction: How well can m_h be extracted?