The ALICE Computing and Data Model

P. Cerello (INFN – Torino)
T0/1 Network Meeting
Amsterdam
January 20/21, 2005
The ALICE Computing Model

- **Objective:**
 - Reconstruct and analyze real pp and heavy-ion data
 - Produce, reconstruct and analyze Monte-Carlo data

- **Requirements/Boundary Conditions:**
 - Serve a large community of users (~1000) distributed around the world (30 countries, 80 institutes)
 - Process an enormous amount of data (several PB/year)

- **Solution:**
 - Exploit resources distributed worldwide
 - Access these resources within a GRID environment
Latest updates (more will come... 😊)

- Dec. 9-10: draft computing model and projected needs discussed at an ALICE workshop
- Dec. 14: presentation to the ALICE Management Board
- Jan. 18: presentation to the LHCC

The evolution will depend on:
- Improved knowledge of the physics (particle multiplicity density) gained from RHIC + theory
- Continuous optimization of required processing power and produced objects size (ESD, AOD)
- Lessons learned from the Physics Data Challenges
The ALICE Computing TDR

- ALICE Computing TDR
 - Elements of the early draft provided to LHCC on Dec. 17, 2004
 - Draft will be presented during the ALICE/offline week in Feb. 2005
 - Approval foreseen during the ALICE/offline week in Jun. 2005

- Parameters
 - Data format, model and handling
 - Analysis requirements and model

- Computing framework
 - Framework for simulation, reconstruction, analysis

- Distributed computing and Grid
 - T0, T1’s, T2’s, networks
 - Distributed computing model, MW requirements

- Project Organisation and planning
 - Computing organisation, plans, milestones
 - Size and costs: manpower

- Resources needed
 - CPU, disk, tape, network, services
 - Overview of pledged resources
Outline of the presentation

- The computing/data model
 - Framework (quickly)

- Experience with Data Challenge 2004
 - Configuration
 - Results
 - Lessons learnt

- Computing/Storage/Network needs
 - Data Handling model & issues
 - Data Flow (with numbers)
Physics Data Challenges

- We need:
 - Simulated events to exercise physics reconstruction and analysis
 - To exercise the code and the computing infrastructure to define the parameters of the computing model
 - A serious evaluation of the Grid infrastructure
 - To exercise the collaboration readiness to take and analyse data

- Physics Data Challenges are one of the major inputs for our Computing Model and our requirements on the Grid Middleware
ALICE Physics Data Challenges

<table>
<thead>
<tr>
<th>Period (milestone)</th>
<th>Fraction of the final capacity (%)</th>
<th>Physics Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/01-12/01</td>
<td>1%</td>
<td>pp studies, reconstruction of TPC and ITS</td>
</tr>
<tr>
<td>06/02-12/02</td>
<td>5%</td>
<td>• First test of the complete chain from simulation to reconstruction for the PPR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Simple analysis tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Digits in ROOT format</td>
</tr>
<tr>
<td>01/04-06/04</td>
<td>10%</td>
<td>• Complete chain used for trigger studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prototype of the analysis tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Comparison with parameterised MonteCarlo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Simulated raw data</td>
</tr>
<tr>
<td>05/05-07/05</td>
<td>TBD</td>
<td>• Test of condition infrastructure and FLUKA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test of gLite and CASTOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Speed test of distributing data from CERN</td>
</tr>
<tr>
<td>01/06-06/06</td>
<td>20%</td>
<td>• Test of the final system for reconstruction and analysis</td>
</tr>
</tbody>
</table>

January, 20th, 2005

T0/1 Network Meeting
Experience from PDC’04

MC data simulation, reconstruction (and analysis)

Do it all on the GRID(s)
Goals, structure and tasks

- Structure – logically divided in three phases:
 - Phase 1 - Production of underlying Pb+Pb events with different centralities (impact parameters) + production of p+p events
 - COMPLETED JUNE 2004
 - Phase 2 - Mixing of signal events with different physics content into the underlying Pb+Pb events (underlying events reused up to 50 times)
 - COMPLETED SEPTEMBER 2004
 - Phase 3 – Distributed analysis: to be started
Global PDC2004 statistics

- Job, storage, data volumes and CPU work:
 - Number and duration:
 - 400 K jobs
 - 6 hours/job
 - Number of files:
 - AliEn file catalogue: 9 M entries
 - 4 M physical files distributes at the AliEn SE’s of 20 computing centres world-wide
 - Data volume:
 - 30 TB stored at CERN CASTOR
 - 10 TB stored at remote AliEn SEs + 10 TB backup at CERN
 - 200 TB network transfer CERN (T0) -> (T1/T2)
 - CPU work:
 - 750 MSi2K hours
Job repartition

- Jobs (AliEn/LCG): Phase 1 - 75/25%, Phase 2 - 89/11%
- More sites added to the ALICE GRID as PDC progressed

- 17 permanent sites (33 total) under AliEn direct control and additional resources through GRID federation (LCG)
GRID efficiencies

- **Network**
 - Network utilization – minimized by the configuration of the PDC, have not seen any latency problems

- **AliEn job failure rates calculations based on the job history**
 - Major contributions:
 - 1% - internal AliEn errors, 8% - various errors at the CEs and SEs
 - The external errors are mostly spurious
 - The situation kept improving as the exercise advanced

- **LCG job failures**
 - Calculation method – jobs are submitted to the LCG RB and expected to deliver the output (same as for AliEn)
 - Major contributors:
 - Phase 1 – jobs ‘disappear’ and no trace back is possible
 - Phase 2 – close/local SE failures – unable to save the output
 - Total job failure rate – 25-40%, mostly in Phase 2
Phase III – (Interactive) Analysis

Large **distributed** input (2 MB/event)

Fairly small **merged** output
The distributed analysis – phase III

- Simplified view of the ARDA E2E ALICE analysis prototype:
 - ALICE experiment provides the UI (ROOT) and the analysis application
 - GRID middleware provides all the rest

- Analysis possibilities:
 - interactive analysis mode: PROOF
 - batch analysis mode
Data are analysed in parallel, where they are stored minimized by the configuration.

Demo on SC2004, 3-rd ARDA workshop at CERN (October) and 2-nd EGEE conference at Hague (November).
ALICE Offline Timeline

2004
- PDC04
 - Analysis PDC04
 - Design of new components

2005
- PDC05
 - Computing TDR
- PDC06
 - Preparation

2006
- PDC06
 - Final development of AliRoot
- First data taking preparation

CDC 05

CDC 04?
The Computing Strategy

Boundary conditions
Processing strategy
ALICE computing model

- Static vs. Dynamic
 - Strict hierarchy of computing sites to which well defined tasks are assigned: Tier0, Tier1, Tier2,...
 - vs.
 - Any task can be assigned to (taken by) sites with adequate free resources

- The GRID middleware selected implementation might intrinsically make a decision...
 - We assume a ‘cloud’ model: T2->T1 not strict
ALICE computing model/Assumptions

- We assume the latest schedule for LHC (peak L):
 - 2007 100d pp $5 \times 10^6 s \times 5 \times 10^{32}$
 - 2008 200d pp $10^7 s \times 2 \times 10^{33}$ 20d HI $10^6 s \times 5 \times 10^{25}$
 - 2009 200d pp $10^7 s \times 2 \times 10^{33}$ 20d HI $10^6 s \times 5 \times 10^{26}$
 - 2010 200d pp $10^7 s \times 10^{34}$ 20d HI $10^6 s \times 5 \times 10^{26}$

- Staging of resources deployment during the initial period (cost reduction 40%/year):
 - 2007 20%;
 - 2008 40%;
 - 2009 100%.

- Reconstruction and simulation: scheduled tasks (PhysicsWorkingGroups, PhysicsBoard)

- Analysis: chaotic task eventually prioritized within PWG
Data format/flow

- **RAW**
 - Lightweight ROOT format tested in data challenges
 - No streaming (this might still change)

- **Reconstruction produces ESD**
 - Reconstructed objects (tracks, vertices, etc.)
 - Early/Detailed Analysis

- **ESD are filtered into AOD, several streams for different analysis**
 - Analysis specific reconstructed objects

- **TAG are short summaries for every event with the event reference**
 - Externalisable pointers
 - Summary information and event-level metadata

- **Ion-Ion MC events are large due to embedded debugging information**
Processing strategy

- For pp similar to the other experiments
 - Quasi-online reconstruction first pass at T0, further reconstruction passes at T1’s
 - Quasi-online data distribution

- For AA different model
 - Calibration, alignment and pilot reconstructions during data taking
 - First reconstruction during the four months after AA run (shutdown) at T0, second and third pass distributed at T1’s
 - Distribution of AA data during the four months after AA run

- we assume the Grid that can optimise the workload
Processing strategy

- **Tier0**
 - Computing: performs first reconstruction pass
 - Storage (permanent): one full copy of raw data, a share of ESD

- **Tier1**
 - Computing:
 - perform additional reconstruction passes (2 & 3)
 - Reconstruction on MC data
 - Storage (permanent): a share of the raw & MC data copy, ESDs

- **Tier2**
 - Computing: simulate and analyse Monte-Carlo data, analyse real data
 - Storage (permanent): shares of ESDs & AODs
Processing strategy / Network

- **Tier0**
 - Network:
 - OUT: 1 copy of raw data to Tier1

- **Tier1**
 - Network:
 - IN: 1 copy of raw data from Tier0
 - OUT: 1 copy of ESDs to Tier2 (x 2 times)
 - IN: 1 copy of MC raw data from Tier2
 - OUT: 1 copy of MC ESDs to Tier2

- **Tier2**
 - Network:
 - IN: 1 copy of ESDs from Tier1 (x 2 times)
 - OUT: 1 copy of MC raw data to Tier1
 - IN: 1 copy of MC ESDs from Tier1
Networking Numbers

- Most difficult to predict in absence of a precise (i.e., tested) analysis model

- Net traffic $T_0 \Rightarrow T_1$ can be calculated
 - Service data challenges will help here

- Traffic $T_1 \Leftrightarrow T_2$ can also be calculated from the model, but it depends on Grid efficiency and analysis model

- Traffic $T_1 \Leftrightarrow T_1$ & $T_2 \Leftrightarrow T_2$ depends also on the Grid ability to use non local files and on the size of the disk cache available
 - A valid model for this does not exist (yet)
Uncertainties in the model

- No clear estimates of calibration and alignment needs
- No experience with analysis data access patterns
 - We will probably see “real” patterns only after 2007!
- We never tried to “push out” the data from T0 at the required speed
 - This will be done in the LCG service challenges
- We are still uncertain on the event size
 - In particular the pile-up in pp
 - ESD and AOD are still evolving
- We need to keep options open!
... now the numbers
ALICE computing model/Parameters

- Event statistics
 - Recoding rate: 100 Hz
 - MC: merge signal into reusable background
 - Same statistics for MC data as for real data

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(events/year)</td>
<td>1e9</td>
<td>1e8</td>
</tr>
<tr>
<td>MC data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>background</td>
<td>1e9</td>
<td>1e7</td>
</tr>
<tr>
<td>(events/year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal/background</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>
ALICE computing model/Parameters

- Event size & Total size/year: 5.65 PB
 - Raw data: depends on
 - Particle multiplicity: unknown, assume dN/dy=4000
 - Centrality: take average between central and peripheral
 - Compression factor: take 2
 - MC: we know

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real data (MB/event)</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>PB/year</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>MC data (MB/event)</td>
<td>0.4</td>
<td>300</td>
</tr>
<tr>
<td>PB/year</td>
<td>0.4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

January, 20th, 2005 T0/1 Network Meeting 29
ALICE computing model/Parameters

- Reconstructed objects
 - Real data: we assume
 - ESD: 20% of raw size: 0.45 PB/year
 - AOD: 10% of ESD: 0.045 PB/year
 - MC: we know what we want to achieve

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>0.20</td>
<td>2.50</td>
</tr>
<tr>
<td>AOD</td>
<td>0.050</td>
<td>0.250</td>
</tr>
<tr>
<td>Event catalog</td>
<td>0.010</td>
<td>0.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MB/ev</th>
<th>PB/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>0.04</td>
<td>2.14</td>
</tr>
<tr>
<td>AOD</td>
<td>0.04</td>
<td>0.214</td>
</tr>
</tbody>
</table>
ALICE computing model/Parameters

- CPU power
 - Known for simulation and reconstruction, including future optimization
 - Guessed for calibration + alignment and for analysis

<table>
<thead>
<tr>
<th>CPU power</th>
<th>pp</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>3.5E1</td>
<td>1.5E4</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>5.40</td>
<td>6.75E2</td>
</tr>
<tr>
<td>Cal&Al</td>
<td>0.5</td>
<td>6E1</td>
</tr>
<tr>
<td>Analysis</td>
<td>3</td>
<td>4E2</td>
</tr>
</tbody>
</table>
ALICE computing model/Parameters

- Repetition
 - 3 reconstruction passes
 - 23 analysis passes: 15 physicists analyze 10 times 1% of the data + 3 times full set, one per reconstruction pass

- Permanent data storage
 - Raw data: original at CERN + 1 copy distributed
 - Reconstructed and simulated: 1 set distributed

- Transient data storage (depends a lot on GRID)
 - Raw data: 2% at CERN, 10% at each Tier1, 24h buffer for export
 - Reconstructed data: 2 copies of one reconstruction pass distributed
 - MC data: 20% of everything distributed in Tier1s and Tier2s
ALICE computing model/Parameters

- Efficiency factors: adopted

 Scheduled CPU 0.85
 Chaotic CPU 0.60
 Disk 0.70
ALICE computing model

- Total of CPU resources required per year:

<table>
<thead>
<tr>
<th>CPU (MSI2K)</th>
<th>Tier0</th>
<th>Tier1</th>
<th>Tier2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>7.5</td>
<td>10.7</td>
<td>15.8</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>22%</td>
<td>31%</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.5</td>
<td>10.6</td>
<td>10.9</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>17%</td>
<td>41%</td>
<td>42%</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Computing Capacities required by ALICE

<table>
<thead>
<tr>
<th></th>
<th>Tier0</th>
<th>Tier1</th>
<th>Tier2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (MSI2K)</td>
<td>4.5</td>
<td>10.6</td>
<td>10.9</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>17%</td>
<td>41%</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>DisK (Pbytes)</td>
<td>0.5</td>
<td>6.3</td>
<td>1.7</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>75%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>MS (Pbytes/year)</td>
<td>2.7</td>
<td>8.7</td>
<td>-</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>23%</td>
<td>77%</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
ALICE computing model

- Average capacity in T1 and T2 assuming:
 - 6 T1s: Lyon, CNAF, RAL, Nordic Countries, FZK, NIKHEF
 - 21 T2s

<table>
<thead>
<tr>
<th></th>
<th>Tier1</th>
<th>Tier2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (MSI2K)</td>
<td>1.77</td>
<td>0.52</td>
</tr>
<tr>
<td>DisK (Pbytes)</td>
<td>1.05</td>
<td>0.08</td>
</tr>
<tr>
<td>MS (Pbytes/year)</td>
<td>1.3</td>
<td>-</td>
</tr>
</tbody>
</table>

January, 20th, 2005 T0/1 Network Meeting
ALICE computing model

- **Network:**
 - **T0**
 - IN: condition and raw data from DAQ
 - pp: 100 MB/s, 7 months, AA: 1.25 GB/s, 1 month, 24h disk buffer
 - OUT: condition and raw data and first pass ESD export to T1s
 - pp: 68 MB/s over 7 months, AA: 120 (600) MB/s, over 5(1) month(s), 24h disk buffer
 - **T1**
 - IN: condition and raw data and first pass ESD import, MC data from T2s: 22 MB/s, 12 months
 - OUT: ESD to T2s: 37 MB/s, 12 months
 - **T2**
 - IN: ESD from T1: 10-12 MB/s, 12 months
 - OUT: MC data to T1: 6-7 MB/s, 12 months
ALICE computing model

- Network total: averaged performance (rounded)

<table>
<thead>
<tr>
<th>Network</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN (Gb/s)</td>
<td>1.60</td>
<td>0.3 (1.0)</td>
<td>0.1</td>
</tr>
<tr>
<td>OUT (Gb/s)</td>
<td>1.0 (5.0)</td>
<td>0.3</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Open issues

- Balance local-remote processing at T1’s
 - We assume the Grid will be clever enough to send a job to a *free* T1 even if the RAW is not resident there

- Balance tape-disk at T1’s
 - Will affect mostly analysis performance

- Storage of Simulation
 - Assumed to be at T1’s
 - Difficult to estimate the load on the network

- Ramp-up
 - Our figures are calculated for a *standard year*: we need to work-out with LCG a *ramp-up* scenario

- T2’s are supposed to *fail-over* to T1’s for simulation and analysis
 - But again we suppose the Grid does this!
Conclusions

- ALICE choices for the Computing framework have been validated by experience
 - The Offline development is on schedule

- ALICE developed a Grid solution adequate to its needs
 - Its future evolution is now uncertain, as a common project
 - This is a (non-technical) **high-risk** factor for ALICE computing

- ALICE developed a computing model from which predictions of the needed resources can be derived with reasonable confidence

- Numbers for CPU & Network might significantly change
Scope of the presentation

- Describe the current status of the ALICE Computing Model
- Describe the assumptions leading to the stated needs
- Give an overview of the future evolution of the ALICE Computing Project
Workplan in 2005

- Development of Alignment & Calibration framework
- Change of MC
- Continued collaboration with DAQ and HLT
- Continued AliRoot evolution
- Development of analysis environment
- Development of MetaData
- Development of visualisation
- Revision of detector geometry and simulation
- Migration to new Grid software
- Physics and computing challenge 2005
- Organisation of computing resources
- Writing of the computing TDR
Event statistics

Underlying events (Phase 1)

- 120 K events (30 TB of data) stored in CASTOR at CERN

<table>
<thead>
<tr>
<th>Centrality name</th>
<th>Impact parameter value [fm]</th>
<th>Produced events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cent</td>
<td>0 - 5</td>
<td>20K</td>
</tr>
<tr>
<td>Per1</td>
<td>5 - 8.6</td>
<td>"</td>
</tr>
<tr>
<td>Per2</td>
<td>8.6 - 11.2</td>
<td>"</td>
</tr>
<tr>
<td>Per3</td>
<td>11.2 - 13.2</td>
<td>"</td>
</tr>
<tr>
<td>Per4</td>
<td>13.2 - 15</td>
<td>"</td>
</tr>
<tr>
<td>Per5</td>
<td>> 15</td>
<td>"</td>
</tr>
</tbody>
</table>
Phase 2 physics signals:

- 37 different signal conditions, necessary for the physics studies for the ALICE PPR.

1.5 M events, 340K jobs

<table>
<thead>
<tr>
<th>Signal</th>
<th>No. of signal events</th>
<th>Number of jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets (un- and quenched) cent 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jets PT 20-24 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 24-29 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 29-35 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 35-42 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 42-50 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 50-60 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 60-72 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 72-86 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 86-104 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 104-125 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 125-150 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 150-180 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>399940</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jets (un- and quenched) per 1</th>
<th></th>
<th>399940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets PT 20-24 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 24-29 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 29-35 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 35-42 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 42-50 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 50-60 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 60-72 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 72-86 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 86-104 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 104-125 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 125-150 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Jets PT 150-180 GeV/c</td>
<td>5</td>
<td>1666</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>399940</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHOS</th>
<th>cent 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet-Jet PHOS</td>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>Gamma-jet PHOS</td>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>40000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D0</th>
<th>cent 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>5</td>
<td>20000</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>100000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charm & Beauty</th>
<th>cent 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Charm (semi-e) + J/psi</td>
<td>5</td>
<td>20000</td>
</tr>
<tr>
<td>Beauty (semi-e) + Y</td>
<td>5</td>
<td>20000</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>200000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUON</th>
<th>cent 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon cocktail cent1</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Muon cocktail HighPT</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Muon cocktail single</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>6000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUON</th>
<th>per 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon cocktail per1</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Muon cocktail HighPT</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Muon cocktail single</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>6000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUON</th>
<th>per 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon cocktail per4</td>
<td>5</td>
<td>20000</td>
</tr>
<tr>
<td>Muon cocktail single</td>
<td>100</td>
<td>20000</td>
</tr>
<tr>
<td>Total signal</td>
<td></td>
<td>2100000</td>
</tr>
</tbody>
</table>

| **Grand total** | | 15239680 | 3399968 |
Principles and platforms

- True GRID data production and analysis: all jobs are run on the GRID, using only *AliEn* for access and control of native computing resources
- LCG GRID resources: access through AliEn-LCG interface
- In phase 3: *gLite+PROOF with ARDA E2E Prototype for ALICE*
- Reconstruction and analysis software distributed remotely by AliEn: AliRoot/GEANT3/ROOT/gcc3.2 libraries:
 - The AliROOT code was kept backward compatible throughout the exercise
- Heterogeneous platforms:
 - Various types of scheduling systems: LSF, BQS, PBS, SGE, Condor, Fork
 - Multitude of storage element types: NFS, CASTOR, HPSS, dCache (untested)
 - GCC 3.2 + ia32-bit Cluster
 - **GCC 3.3 + ia64 Itanium Cluster**
Monitoring – AliEn

Sophisticated monitoring system:
- Job tracking from submission to finish – 11 different states with 9 possible error conditions
- Essential for the operation, resubmission of failed jobs and debugging of errors on all levels

AliEn submit command → INSERTING → Error_I

WAITING

ASSIGNED → Error_A

QUEUED → Error_S

CE local scheduler

STARTED → Error_E

wn

ZOMBIE: >1h
RUNNING:
法院: >3h
SAVING: → Error_SV

AliEn task queue

January, 20th, 2005
Software management

- Regular release schedule
 - Major release every six months, minor release (tag) every month
- Emphasis on delivering production code
 - Corrections, protections, code cleaning, geometry
- Nightly produced UML diagrams, code listing, coding rule violations, build and tests, single repository with all the code
 - No version management software (we have only two packages!)
- Advanced code tools under development (collaboration with IRST)
 - Aspect oriented programming
 - Smell detection
 - Automated testing
Condition DataBases

- Information comes from heterogeneous sources
- All sources are periodically polled and ROOT files with condition information are created
- These files are published on the Grid and distributed as needed by the Grid DMS
- Files contain validity information and are identified via DMS metadata
- No need for a distributed DBMS
- Reuse of the existing Grid services
Operation methods and groups

- Phase 1 and 2:
 - Central job submission – one person in charge of everything

- Phase 3:
 - Many users with centralized user support
 - 2 ALICE experts responsible for:
 - The operation of the core AliEn services
 - Monitoring of jobs, remote CEs and SEs

- CERN storage and networking: IT/FIO, IT/ADC

- LCG operation: IT Grid Deployment Team

- Local CE/SE: one local expert (typically the site administrator)

- The above structure was/is working very well:
 - Regular task-oriented group meetings
 - Direct consultations and error reporting to the experts at the CEs
 - LCG Savannah, Global Grid User Support at FZK
Experiences – duration of PDC’04

- Many of the challenges we encountered would not have shown in a short DC:
 - Particularities of operating the GRID and CE machinery for extended periods of time
 - Keeping a backward compatibility of the software, which is constantly under development
 - Need for a stable and Grid-aware personnel, especially at the T2 type computing centres
 - Keeping the pledged amount of computing resources throughout the exercise at the CEs
 - Once committed, the local resources cannot be ‘taken away’
 - Steady utilization of the available resources to their maximum capacity
 - Not always possible – breaks were needed to do software development and fixes (intrinsic property of a Data Challenge)
Experiences
– operation and computing resources

Phase 1:
- Slow ramp-up and steady progress afterwards
- Hit the limitations of the CASTOR MSS stager (being reworked)
- Limiting factor – number of CPUs available at the ALICE controlled computing centres and through LCG

Phase 2:
- Difficulty to achieve planned number of CPUs and uniform job distribution at the LCG sites:
 - Competition for resources with the other LHC data challenges – partially alleviated by introducing dedicated ALICE queues at the LCG sites and more instances of the LCG RB
- Instability and frequent failures of the LCG SEs

Phase 3 (anticipated):
- Need for extensive user support for analysis on the GRID
Experiences - future

- As expected – the most challenging part is the multi-user operation during phase 3:
 - To execute it properly, we need the AliEn components in gLite, which have been tested by ARDA for ALICE
 - The lost momentum should be regained once we deploy the middleware – the computing resources are on stand-by
 - In the case we cannot deploy the new middleware within weeks – we have to scale down the planned Phase 3 scope and limit it to expert users
Summary on PDC’04

- **Computing resources:**
 - It took some effort to ‘tune’ the resources at the remote computing centres to meet the expectations and demands of the GRID software.
 - By and large, the outside response to the exercise was very positive – more CPU and storage capacity was made available as the PDC progressed.

- **Middleware:**
 - AliEn proved to be fully capable of routinely executing jobs with high complexity (Phase 1 and 2 like) and exercising control over large amounts of computing resources.
 - Its functionality needed for Phase 3 has been demonstrated, but due to the ‘frozen’ status and support issues, cannot be released to the ALICE physics community.
 - The LCG middleware proved adequate for Phase 1-type tasks, but below average for Phase 2-type tasks and in a competitive environment.
 - It cannot provide the additional functionality needed for Phase 3-type jobs (f.e. reliable handling of hundreds of parallel analysis jobs, fairsharing of resources).
The ALICE Grid strategy

- There are millions lines of code in OS dealing with GRID issues
- Why not using them to build the minimal GRID that does the job?
 - Fast development (cycle) of a prototype
 - Quick (Immediate) adoption of emerging standards
- AliEn by ALICE (5% code developed, 95% imported)

2001 2002 2003 2004 2005
Start

10% Data Challenge (analysis)
Physics Performance Report (mixing & reconstruction)
First production (distributed simulation)

Functionality + Interoperability + Performance, Scalability, Standards +
Simulation Reconstruction Analysis

January, 20th, 2005
ALICE requirements on MiddleWare

- ALICE assumes that a MW with the same quality and functionality that AliEn would have had in two years from now will be deployable on the LCG computing infrastructure
- All users should work in a pervasive Grid environment
- This would be best achieved via a common project, and ALICE still hopes that the EGEE MW will provide this
- If this cannot be done via a common project, then it could still be achieved continuing the development of the AliEn-derived components of gLite
 - But then few key developers should support ALICE
- Should this turn out to be impossible (but why?), the Computing Model would have to be changed
 - More human [O(20) FTE/y] and hardware resources [O(+25%)] will be needed for the analysis of the ALICE data
Phase III – new middleware strategy

- Change of middleware - reasons:
 - The status of LCG DMS is not brilliant
 - Phase 3 functionality is existing and adequate in AliEn but...
 - *All AliEn developers/maintainers working now in EGEE and ARDA*

- Obvious choice is to do Phase 3 with the next generation of middleware – gLite with the AliEn components imported and improved

- Advantages
 - Uniform configuration: gLite on EGEE/LCG-managed sites & on ALICE-managed sites
 - If we have to go that way, the sooner the better

- Disadvantages
 - It introduces a delay with respect to the original plan – *proved to be considerably longer than anticipated*
Summary on PDC’04 (2)

- **ALICE computing model validation:**
 - AliRoot – all parts of the code successfully tested
 - AliEn – full functionality tests in Phases 1 and 2 and demonstrated for Phase 3

- **Computing elements configuration:**
 - Need for a performing MSS shown
 - The Phase 2 distributed data storage schema proved very robust and fast
 - Network utilization – minimized by the configuration of the PDC, have not seen any latency problems (also the AliEn built-in protection helped)

- **Data analysis** – the planned execution of this phase is contingent on the availability of the tested AliEn components in gLite
Related documents

- Computing MOU
 - Distributed to the Collaboration for feedback on October 1, 2004
 - Provide the C-RRB with documents to be approved at its April 2005 meeting
 - Subsequently distributed for signature

- ALICE Computing TDR
 - Elements of the early draft given to LHCC on December 17, 2004
 - Draft will be presented during the ALICE/offline week in February 2005
 - Approval during the ALICE/offline week in June 2005
 Metadata

- MetaData are essential for the selection of events
- We hope to be able to use the Grid file catalogue for one part of the MetaData
 - During the Data Challenge we used the AliEn file catalogue for storing part of the MetaData
 - However these are file-level MetaData
- We will need an additional catalogue for event-level MetaData
 - This can be simply the TAG catalogue with externalisable references
- We will take a decision in 2005, hoping that the Grid scenario will be clearer
Online Framework: Data Format

Physics data:
- Raw data flow to DAQ/HLT = f (interaction, Triggers L0 L1 L2)
- Raw data flow to storage = f (raw data, mode, HLT decision)
Event building and data recording in GDCs

Sub-events (raw data, HLT)
HLT decisions

Event Building Network

Event builder:
- In: sub-events
- Out: I/O vector
- Set of pointer/size pairs

ROOT recorder:
- ROOT data format
- Possibly parallel streams
- CASTOR file system
- Interfaced to the Grid

DATE data banks

- Raw data
- HLT data

Raw data

HLT data

event builder

ROOT recorder

Storage Network

Grid Catalog

AliEn \(\rightarrow\) gLite

Complete accepted events

GDC

NIC

January, 20th, 2005
T0/1 Network Meeting
63
External relations and DB connectivity

From URs:
Source, volume, granularity, update frequency, access pattern, runtime environment and dependencies

Call for UR sent to subdetectors

API – Application Program Interface
The Offline Framework

- AliRoot in development since 1998
 - Entirely based on ROOT
 - Used for the detector TDR’s and the PPR
- Two packages to install (ROOT and AliRoot)
 - Plus transport MC’s
- Ported on several architectures (Linux IA32, IA64 and AMD, Mac OS X, Digital True64, SunOS...)
- Distributed development
 - Over 50 developers and a single cvs repository
- Tight integration with DAQ (data recorder) and HLT (same code-base)
Development of Analysis

- Analysis Object Data designed for efficiency
 - Contain only data needed for a particular analysis

- Analysis à la PAW
 - ROOT + at most a small library

- Batch analysis infrastructure
 - Prototype published at the end of 2004 based on AliEn

- Interactive analysis infrastructure
 - Demonstration performed at the end 2004 with AliEn→gLite

- Waiting now for the deployment of gLite MW to analyse the data of PDC04

- Physics working groups are just starting now, so timing is right to receive requirements and feedback
Production history

- ALICE repository – history of the entire DC
- ~ 1 000 monitored parameters:
 - Running, completed processes
 - Job status and error conditions
 - Network traffic
 - Site status, central services monitoring
- 7 GB data
- 24 million records with 1 minute granularity – these are being analysed with the goal of improving the GRID performance