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Outline
Assumption: A robust jets+MET excess has been seen at 
the LHC

Why a model-independent characterization of new physics is 
valuable.

The first three questions to ask about the new physics

Four  “simplified models” to frame and answer these 
questions

How the simplified models are constrained, and how to use 
them
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• Hierarchy problem:  What cancels top contribution to 
Higgs mass? 

~• Symmetry → “partners” with same 3-2-1 quantum 
numbers as Standard Model particles.

• Minimal: top, SU(2)xU(1) gauge boson partners – top 
partner is colored, will be produced (if light enough)

• SUSY, Randall-Sundrum, or Universal Extra Dimensions: 
Spacetime symmetry → partners for all SM particles

Why new physics?

t
h +

top partner related 
by symmetry to top
(boson or fermion)

t~
h
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Why new physics?
• Hierarchy Problem

• TeV-scale Dark matter?

• If partner states are odd under a new parity, lightest 
parity-odd particle is stable and a DM candidate        
(also helps guarantee proton stability)

• Two consequences for LHC searches

• new particles produced in pairs

• some collision energy in lost to invisible particles (2 of 
them)

• We’ll call models with partners and parity “SUSY-like”: e.g. 
weak-scale supersymmetry, universal extra dimensions, and 
“theory space” models (e.g. Little Higgs) w/ T-parity

→ partners

→ parity
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Well-Motivated Signature

p

p

strongly 
interacting 
partners

quarks

lightest partner “LSP” 
(stable, neutral)

lightest partner 
(stable, neutral)

color-singlet 
partners

SM color-
singlets

Common signal of 
SUSY-like models:

Jets + Missing energy + (leptons?)

If jets+MET+leptons excess(es) are seen, it’s reasonable 
to assume SUSY-like physics interpretation!
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Jets+MET excess is evidence for 
SUSY-like new physics

.....how do we learn more about 
it?

Focus on questions that (within SUSY-like framework) are  
almost guaranteed to be relevant and accessible in 
the first few years of the LHC (really 1-10x discovery 
luminosities).
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Preliminary Interpretation
When we do get distributions, there will be a lot we can do

Easy Cases:

Self-calibrating signal, like a 
mass peak

HT observable

peak~1.7*Mass difference
(depending on decay chain)

is roughly encoded 

di-object mass can have 
distinctive phase 

space cutoff, giving a 
constraint on decay chain 

mass difference

m2

mLSP

mL

m2

mLSP

(this slide + several others “borrowed” from P. Schuster and J. Alwall)
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Preliminary Interpretation
What about less kinematically sharp distributions?

Easy to compare to well-simulated guesses...much harder to turn 
out physical quantities (masses, branching ratios, cross sections

...or even “detector-corrected” distributions)

Jet Count B Count

Jet ET Lepton ET

even in 
principle, 

distributions 
not narrow

further 
smeared by 

detector
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Goals for Early Characterization

Obstacles to assembling hard-to-
read distributions into physical 
results: cross sections

branching ratios
masses

  X     

- distributions with no sharp features
- many possible models
- many regions of parameter space to consider in each model
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Example
lepton-inclusive signal region (3 jets, pT>75 GeV, HT> 350, MET > 100)

# of b-tagged jets 
(transverse momentum > 30 GeV)

Assume experimentalists have 
understood and subtract 

backgrounds
(we’ll make life easy: ignore them 

completely!)

Data with 
expected background

(tt only)
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Example

# of b-tags
(backgrounds subtracted)

Data vs.  
correct model

(wrong simulator)

b-counts off by almost 50% in 
some bins!

Limited by accuracy of model-
builder’s description of detector

(I have used one version of PGS as my “detector” 
and “experimentalist’s simulator”, and a different 
version as my “theorist’s simulator”)

Suppose a theorist were to guess the 
correct model, and simulate it in PGS .... 
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Number of B Jets (pT>30 GeV) (in lepton-inclusive region)
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Example
lepton-inclusive signal region (3 jets, pT>75 GeV, HT> 350, MET > 100)

# of b-tags inferred # of b-jets

?

0 2 4

Could make RHS plot by “inverting” efficiencies based on # of 
jets, pT’s, and etas in each event 

(I’ve never seen it done, seems very hard)
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model X vs.
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(There are systematic errors in this procedure –– e.g. if model X mis-models   
kinematics and PGS mis-models efficiencies but they are partially corrected)

Red line:  model X with 
gluon-partner pair production,
32% → qq LSP, 68% → tt LSP

(limited by 
experimental collaboration’s 

detector modeling)

Alternative Approach

Data vs.  
some model “X”
(well simulated)

Instead of comparing their 
model to data,

any theorist can simulate their 
model and model X in PGS
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How do we get physics out?
• Choose our battles: 

• Specific, well-posed phenomenology questions 
(motivated by theoretical interest)

• How much of the model structure can we resolve?

• Choose small parameter spaces that span resolvable 
structure efficiently (Simplified Models)

• Once there’s robust evidence for new physics:

Signal 
distributions

Simplified Model 
parameter fits & 

comparison

Model hypothesis-testing (inside 
& outside collaborations)

More sophisticated 
discrimination among models

Precise parameter 
determination

Searches for sub-leading 
processes predicted by models

...
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Very simple questions  for a broad-brush characterization of 
SUSY-like data

1) Which colored particles dominate production?

2) What color-singlet decay channels are present, and in what 
fractions?

3) How b-rich are the events?

Why are these interesting theoretically?

The First Three Questions
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(1) Dark Matter & Cosmology
Can the LSP (SUSY or not) account for most of the dark 
matter in the universe?  Is a thermal freeze-out scenario 
consistent with direct nuclear recoil DM searches?

Low production cross-section for weakly interacting states at 
LHC, and they’re (nearly) invisible.

→ can’t expect to measure DM couplings directly
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(1) Dark Matter

Consistent DM scenarios in MSSM: 

Wino  ~1 TeV               Higgsino  ~2 TeV

Bino <100 GeV             B/W or B/H mixture 100-1000 GeV

annihilates through 
t-channel slepton

at ~100 GeV

10-20% mass splitting, large 
mixing and/or coannihilation

Within a model, LHC data may suffice to exclude LSP 
thermal dark matter within particular models, or to 
predict annihilation channel.

Can get clues about LSP couplings, SU(2) multiplet, 
nearby states from decay chains!

best discovery 
scenarios
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(2) Hierarchy Questions
How heavy is the top partner?  Is it lighter than the other 
quark partners, or heavier?  Are LH and RH stops very split?  
Is there mixing/large A-terms?

Like LSP, first sign of top-partner may not be direct 
production (no top PDF, no Nf), but role in gluino decay chain.

First question (pheno): what is the dominant source of heavy 
flavor in the new physics?  Is it correlated with leptonic 
cascades?  With W’s?

Second: What spectra and interactions are consistent with 
this?  And what are their implications for model-building?
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(3) SUSY Mediation to SM
What is the ordering and splitting of gaugino/partner 
masses?

Many models make specific predictions for M1 : M2 : M3 –

mSUGRA or Gauge mediation – 1:2:6

Anomaly mediation – 2:1:6

Minimal UED – 1:1:1 + corrections

...

Constraints on ordering and splitting from decay chains  
place tight constraints on underlying physics!
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1) Which colored particles dominate production?

2) What color-singlet decay channels are present, and in what 
fractions?

3) How b-rich are the events?

Easiest to frame quantitative questions in terms of sharply 
specified models – what models should we choose, to have a 
good chance of fitting any jets+MET+leptons signal from 
SUSY-like physics?

The First Three Questions
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Most Familiar Models

Benchmarks : Good for designing searches – most 
production & decay topologies of interest are in a 
benchmark, but most combinations of topologies are not.

mSUGRA (or similar constrained frameworks) : Fixed mass 
ratios still prohibit qualitative changes to spectrum; need 
many different frameworks to cover phenomenology.  

MSSM (and other many-parameter models) :  Technically 
challenging to optimize, very hard to present and interpret 
globally (e.g. if >1 region of parameter space is consistent 
with data)

(CMS and ATLAS are prepared to use these)
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1) Which colored particles dominate production?

2) What color-singlet decay channels are present, and in what 
fractions?

Models with one produced species,  one-stage cascade 
decay (produced species either G or Q).

3) How b-rich are the events?

G: Produce gluon partners that decay to qq, bb, or tt +LSP

Q: Pair-produce parters of q12, b, and t

Four Simplified Models

Quark partner
Q

Gluon partner
G

_ _ _

Either or

study 
each in a 
separate 
model

Total of four models
GOAL: As simple as possible to answer these three questions

+ fit ANY new physics in SUSY-like class well
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Simplified Models of 
Lepton Cascades

From gluon partner:

q

q

q

q q

W/Z(∗)

G

G

G G G

σG

q

*
!

!

q
G

q

*

! or ν
ν or "

BW /BZBLSP B!! B!ν

!ET

!ET !ET !ET

MI

(ML)
MLSP

MG

Masses

From quark partner:

q q q

*

Q

Q

Q Q Q

W/Z(∗)

q

*

! or ν
ν or "!

!

BW /BZBLSP B!! B!νσQ

Q

!ET !ET !ET

!ET

Masses

MI

(ML)
MLSP

MQ

*on or off-shell
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Simplified models don’t include all possible SUSY-like behavior 
in models:

• Quark-partner and gluon-partner production

• Different decay modes for LH and RH quark partners

• Multiple cascades

      etc...

But our goal is to answer the three questions – additional 
structure can often be guessed from comparisons of data 
distributions to those predicted by simplified models.

Trying to match too much at once → larger parameter space, less 
constrained and harder to present.  No in-principle reason not 
to extend the models, but important to understand what we can 
do with simplest models.
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Simplified Models of 
Lepton Cascades

From gluon partner:

*on or off-shell

Parameters:
• One total production cross-section
• Five branching fractions (sum to 1); three easy
• Three masses (four if slepton on-shell)

Can be constrained in data (2 parameters harder)

q

q

q

q q

W/Z(∗)

G

G

G G G

σG

q

*
!

!

q
G

q

*

! or ν
ν or "

BW /BZBLSP B!! B!ν

!ET

!ET !ET !ET

MI

(ML)
MLSP

MG

Masses
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Constraining σ and BR’s
q

q

q

q q

W/Z(∗)

G

G

G G G

σG

q

*
!

!

q
G

q

*

! or ν
ν or "

BW /BZBLSP B!! B!ν

!ET

!ET !ET !ET

Signatures quite distinctive (dilepton pairs on Z peak, opposite-flavor leptons, ...)
except BW looks like Blν x 0.32 + BLSP x 0.68.  

Study extreme limits, e.g. BW=0, or Blν=0
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Additional constraints
Exchanging W↔(lν+direct) 

changes jet multiplicities, and 
correlation with lepton counts.

Choosing gluon/squark partner 
also changes jet multiplicities.

Varying particle masses changes 
kinematic distributions
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1) Which colored particles dominate production?

2) What color-singlet decay channels are present, and in what 
fractions?

Models with one produced species,  one-stage cascade 
decay (produced species either G or Q).

3) How b-rich are the events?

G: Produce gluon partners that decay to qq, bb, or tt +LSP

Q: Pair-produce parters of q12, b, and t

Four Simplified Models

Quark partner
Q

Gluon partner
G

_ _ _

Either or

study 
each in a 
separate 
model

Total of four models

✔
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Heavy Flavor Models

From quark partner:

From gluon partner:

t
t

G

G

q

q
G b

b
G G

Bbb BttBqqσG

!ET!ET!ET MLSP

MG

Masses

q b
T

σQ σB σT

T

TQ

Q Q

B

B B

!ET!ET!ET

MLSP

Masses
MQ/T/B

Different structures / different patterns of b-tag multiplicity
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Gluon Heavy Flavor Model:
Top/Bottom Fractions

(1) fit using only b-jet counts, and no tt mode: 

- detector-independent characterization of b-jet fraction

- check consistency with one source of b-jet pairs

t
t

G

G

q

q
G b

b
G G

Bbb BttBqqσG

!ET!ET!ET

(2) include tt, lepton counts

      - is it consistent for all leptons come from tops?

- check kinematics, too
Note the omission of  lepton cascades here!  
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Another kind of information
Distributions that cannot be explained without adding 
structure beyond simplified models
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Softer lepton source in signal than simplified models: can’t match while 
keeping invarinat mass distribution agreement – indicative of multiple 
cascades
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Important to see several kinds of results

• Simplified model best fit

• Parameter uncertainties, particularly careful treatment of weakly 
constrained parameters

• Comparisons of the data to expectations for best-fit simplified 
model –– both for distributions used in the fit and for diagnostics

Back-of-the-envelope analysis

• “Good fit” suggests what regions of parameter space to study in 
model-building

• “Bad fit” suggestive of additional structure (multiple species 
production, multiple cascades in decays, etc...)

Quantitative comparison

• Can compare predictions of any model to simplified model 
predictions (e.g. in PGS) to gauge consistency with data.

Using Simplified Model Fits
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Building Models from Simplified 
Models
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(shown over ttbar background)
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Experimental comparison: Theorist’s comparison
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vs. Data 
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Conclusions
Many kinds of new physics could be visible at the LHC in           
jets+missing energy searches

• How to characterize them to maximize theory returns?

• And in a detector-independent way?

Simplified models are a concrete proposal:

• 2 models for leptonic cascades, 2 models for heavy flavors

• Few, simple parameters – easy to fit and easy to interpret

Fits of simplified models to data facilitate qualitative and 
quantitative comparisons to data by theorists outside 
collaborations
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Building Models from Simplified 
Models

Simplified Model (Leptons)
vs. Data 

(shown over ttbar background)

Simplified Model
vs. 3 SUSY models 

Experimental comparison: Theorist’s comparison
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Building Models from Simplified 
Models

Simplified Model (Heavy flavor)
vs. Data 

(shown over ttbar background)

Simplified Model
vs. 3 SUSY models 

Experimental comparison: Theorist’s comparison
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Will we see it?
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We’re kind of prepared

Benchmarks : Good for designing searches – most 
production & decay topologies of interest are in a 
benchmark, but most combinations of topologies are not.

mSUGRA (or similar constrained frameworks) : Fixed mass 
ratios still prohibit qualitative changes to spectrum; need 
many different frameworks to cover phenomenology.  

MSSM (and other many-parameter models) :  Technically 
challenging to optimize, very hard to present and interpret 
globally (e.g. if >1 region of parameter space is consistent 
with data)

Let’s look at what CMS and ATLAS are 
prepared to use:
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Constraining σ and BR’s
Branching ratios well constrained by these counts (aside from the W/Lnu ambiguity):
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Green 13.1 0.613 –– 0.03 0.052 0.30
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** Don’t take these errors too seriously!!  No backgrounds, etc. 

low-significance discrepancy
...can try to find models that reproduce it

Masses:
Best fit to 

kinematics, with LSP 
fixed at 100 GeV
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W vs lnu Modes
Within each of the two models (quark-partner or gluon-partner 
initiated),  W↔(lν+direct) changes jet multiplicities, and 

correlation with lepton counts.

(in some cases, lepton kinematics also constrains these fractions)
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[note: this “data” is different from the other slides]
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Comparing Gluon and Squark 
Partners
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Models look different, but not distinguishable without more statistics!
Better observables also help.

Two ways to get jet & lepton counts in simplified models: 
- quark partner decays to 1 jet with W’s in cascades
- gluon partner decas to 2 jets with no hadronic W/Z in cascades

Real physics can interpolate between the two!  
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Constraining σ and BR’s

σ (pb) Bqq Bbb Btt

Green 11.4 0.44 0.56 ––

Red 11.4 0.33 0.03 0.64
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one pair-produced particle 

decaying to bb or q’s
(high heavy-flavor fraction)
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