

# Inclusive BR(b→sγ) with a fully reconstructed B

Clare Brown
Royal Holloway University



# Why study $b \rightarrow s\gamma$ ?

 Possibility of new non-SM particles entering in the loop.



 We are unable to measure the parton level decay rate for b->sγ, however:

$$\mathsf{HQET} \Rightarrow \Gamma(B \to X_s \gamma) = \Gamma(b \to s \gamma) + \Delta^{nonpert}$$

• Next to leading order calculations for BR(B-> $X_s\gamma$ ):

$$(3.29 \pm 0.33) \cdot 10^{-4}$$
 Kagan&Neubert  $(3.60 \pm 0.30) \cdot 10^{-4}$  Gambino&Misiak

• Theoretical uncertainty ~ 10%, mainly from contribution of higher order diagrams in the expansion.



## The signal model

We select signal photons and measure the integral of the photon energy spectrum to determine BR(B-> $X_s\gamma$ ).

Due to the strong force the b quark fragments into B meson, and Xs into a spectrum of K\* resonances.

The b quark interacts with the spectator quark  $\Rightarrow$  scale dependence in m<sub>b.</sub> It also has Fermi momentum p<sub>F</sub> from its confinement in the meson.

The shape function depends on  $m_h$  and  $p_F$ .

Spectrum is smeared with

<E $\gamma$  $> <math>\approx$   $m_b$  / 2

The width (first moment,  $\lambda_1$ ) depends on  $p_F$ 







## **Advantages of a reconstructed B**

Breco (Brecoil) kinematics are well known.

 $E_{\gamma}$  spectrum is measured in the B rest frame.

Luminosities of samples and B reconstruction efficiencies are not needed, as normalization is taken from # reconstructed B's before selection.

The purity of the Breco sample can be easily adjusted by selecting a sub-sample of the reconstructed modes.



Continuum events can be estimated and subtracted by performing a fit to  $M_{ES}$ .

Fully hadronic reconstruction of one B determines tagging of charge and B flavour.  $\Rightarrow$  We can measure BR(B->Xsgamma) and  $\alpha_{\text{CP}}$  in B0 and ChgB separately.

**Disadvantage:** Small B reconstruction efficiency ~ 0.4 %



# **Analysis concept**

Signal: A fully reconstructed B decay &

A high energetic photon in the event.

Backgrounds: from other B decays & continuum background

 $(u\overline{u}, d\overline{d}, s\overline{s}, c\overline{c})$ 





Continuum is estimated from a fit to M<sub>ES</sub> of the Breco and subtracted.



$$M_{ES} = \sqrt{(\sqrt{s}/2)^2 - P_B^{*2}}$$

- The # BBbar background events in the same peaking component as signal are estimated from MC
- The signal yield is extracted from a binned  $\chi^2$  fit to  $E_{\gamma}$  distribution of events that pass the selection.



## **The Data**

82 fb-1 of data (1999-2002) collected at the BaBar detector





## **Selection criteria**

We require: 1 fully reconstructed B decay (Breco)

| Summary of selection Criteria |                                                                  |
|-------------------------------|------------------------------------------------------------------|
| $B_{reco}$ candidate          | int-pur> 0.25                                                    |
| Minimum photon energy         | $E_{\gamma} > 1.3  \mathrm{GeV}$                                 |
| Quality cut                   | LAT< 0.45                                                        |
| Bump isolation cut            | Bump separation > 40cm                                           |
| $\pi^0$ veto                  | $115  { m MeV}/c^2 < M_{\gamma\gamma} < 155  { m MeV}/c^2$       |
| $\eta$ veto                   | $508 \mathrm{MeV}/c^2 < M_{\gamma\gamma} < 588 \mathrm{MeV}/c^2$ |
| Fisher                        | F > 0.2                                                          |
| ho veto                       | $620 \text{MeV}/c^2 < M(\pi^0, \pi) < 920 \text{MeV}/c^2$        |

70% of the Pi0 background comes from B->D\* $\rho$ ,  $\rho$ -> $\pi$ 0 $\pi$ +,  $\pi$ 0-> $\gamma$ 1 $\gamma$ 2

For multiple candidates, we select the most energetic photon (only 0.2% with  $E\gamma$ >1.9GeV)



### **Fisher Discriminant**

(A linear discriminant technique taking care of correlations between variables).

We use event topology to discriminate between signal and continuum background.

- Continuum events are jet like
- BBbar events (incl. signal) are isotropic

28 Fisher Variables:

CosTBB, CosGamTreco(il), R2,R2Neu, Thrust,ThrustNeu, ThrustBreco, Energy cones

linear correlation with  $E_{\gamma}$  <20%, and with charged and neutral multiplicity of the Xs < 15%.





#### The variables

Selection criteria are optimized by varying the cut and minimizing the relative branching fraction error, using MC samples.





Selection efficiencies:

Signal 40% BBbar 0.02%

← Good Data – MC agreement for variables



# Extraction of $BR(B \rightarrow X_s \gamma)$

The branching ratio is extracted using the  $E_{\gamma}$  distribution

$$Br(B \to Xs\gamma) = \frac{N_{TRUE}^{sig}}{N_{TRUE}^{B}} = \frac{N^{sig}}{N^{Breco} \cdot \varepsilon^{sel}} \cdot \frac{\varepsilon_{tag}^{all}}{\varepsilon_{tag}^{sig}}$$

 $N^{Sig}$  is the signal contribution to be extracted for  $E_{\gamma}>1.9 \text{GeV} \rightarrow \text{fit}$   $N^{Breco}$  is the number of Reco B before any cut  $\rightarrow m_{ES}$  fit on data  $\varepsilon^{sel}$  is the selection efficiency for signal events  $\varepsilon^{All(sig)Tag}$  is the Breco tagging efficiency in a generic(sig)  $\rightarrow MC$  decay.



## **Extraction of Nsig**

Samples are divided into bins of  $E_{\gamma}$ .

For each bin, the M<sub>ES</sub> distribution of the Breco is fitted with Argus & Crystal Ball functions and the combinatorial background is subtracted.

 $N^{Sig}$  extracted from a binned  $\chi^2$  fit:

$$\chi^{2}(C_{s}, C_{b}) = \sum_{i=0}^{\#bins} \left( \frac{N_{i}^{meas} - C_{s}N_{i}^{MC(b \to s\gamma)} - C_{b}N_{i}^{MC(bkgd)}}{\sqrt{\delta N_{i}^{meas}^{2} + \delta N_{i}^{MC^{2}}}} \right)^{2}$$

Cs and Cb are the normalizations of Sig and Bkgd components (free parameters)

The last bin contains events with  $E\gamma > 1.9 \text{ GeV}$ 

$$N_{last}^{sig} = N_{last}^{meas} - C_b \cdot N_{last}^{MC(bkgd)}$$



# $b \rightarrow d\gamma$

The B-> $X_{d}$  $\gamma$  component is subtracted.

According to the SM expectation BR(B-> $X_d\gamma$ ) and BR(B-> $X_s\gamma$ ) are in the ratio  $|V_{td}/V_{ts}|^2$  assuming same efficiency for both components.

BR reduced by  $(4.0\pm1.6)\%$ 

## **Fit Validation**

Generic BBbar MC is used instead of data (~ 240 fb-1).

Result:  $Br = (3.16 \pm 0.43(stat)) \cdot 10-4$ 

in good agreement with the input generator value (Br = 3.29 •10-4).

A check on data was performed using a Pi0 control sample  $(\pi 0 \text{ Veto inverted } \& \text{ no } Bump \text{ isolation } cut)$ 

Fit result is consistent with a no signal hypothesis.:  $NSig = 0.5 \pm 10$ 



## Things to do

#### Plans for improvement:

- Add more data
- Improve selection (Fisher Discriminant and Pi0 & Eta vetos)
- Re-optimize cuts
- Study systematics
- Extract result.

We will have a result by the summer!!!

