

IoP meeting
Birmingham, April 2004

Recent results

from R&D towards a

vertex detector

at the future linear collider

Sonja Hillert, University of Oxford on behalf of the LCFI collaboration

A vertex detector for the future LC

Precision measurements require:

- **>**Good angular coverage (cos q = 0.96)
- ➤ Proximity to IP, large lever arm:5 layers, radii from 15 mm to 60 mm
- ➤ Minimal layer thickness (< 0.1% X₀) to minimise multiple scattering
- > Mechanically stable, low mass support
- **≻**Low power consumption

High hit density near interaction point requires:

- ➤ Small pixel size: 20 mm ′ 20 mm
- Fast readout: to be achieved with Column-Parallel CCDs
 - 8ms for NLC/GLC (read between bunch trains)
 - 50 ms for TESLA (read 20 times during trains)

Our first Column-parallel CCD

- > Two phase, pixel size 20 μm ²⁰ μm;
- > 400 (V) 750 (H) pixels;
- > Two charge transport regions;
- ➤ Wire and bump bond connection pads to readout chip and external electronics.

Direct connections and 2-stage source followers

1-stage source followers and direct connections on 20 µm pitch

Stand-alone CCD tests

tested CCD with 5.9 keV X-rays from ⁵⁵Fe source, external VME-ADC at 1 MHz:

- > CCD sensitivity » 3.1 μV/electron;
- ➤ Gain spread between channels £ 6% allows easy data analysis;
- > Noise > 60 electrons with 3 MHz low-pass filter.

Single pixel hits spectrum using information from 3 adjacent columns

Characterising the Performance

Clock amplitudes down to 2 V_{pp} and clock frequencies up to 25 MHz reached

➤ Minimum clock amplitude 1.9 V_{pp} for optimised inter-gate barrier and field—enhancement (i.e. smaller charge storage region)

➤ At high frequency: increased clock feedthrough and noise, under further investigation

Readout Chip CPR1

6 mm

Wire/bump bond pads

Wire/bump bond pads

ASIC for CPC-1 readout

- Design: RAL Microelectronics Group;
- Voltage amplifiers for 1-stage SF outputs;
- Charge amplifiers for direct outputs;
- > 20 μm pitch, 0.25 μm CMOS process;
- Wire- and bump-bondable;
- > Scalable and designed to work at 50 MHz.

Stand-alone CPR1 tests

- ➤ test signal applied directly to ADC section: all 250 channels work fine;
- Non-uniform response: chip centre yields150 mV lower output.

Slice along the the ADC array

Time

Slice across the ADC array

ADC channel

Testing CCD & CPR1 wire-bonded

X-ray signals generated in CPC-1, amplified and digitised in CPR-1

- ➤ Several 1-stage SFs on CPC-1 bonded to voltage amplifier channels on CPR-1;
- ➤ 1 MHz CCD clock and sampling frequency;
- Noise performance as expected;
- > Capacitors on CPR-1 withstand > 20 V robust.

Major milestone reached!

Thin-ladder development

Multiple scattering impairs physics performance – How thin can ladders be made?

Ideas:

1.) Unsupported silicon under tension:

Stiff in longitudinal direction, but laterally instable → not believed to be promising

2.) semi-supported silicon, thinned to epitaxial layer (> 20 mm):

Silicon glued to substrate, e.g. Beryllium, composites, ceramics, foams;

30 mm Si, 250 mm Be, 200 mm glue pillars (Nusil):

Measurement on physical models: about 150 mm ripples at - 35 C

FEA-analysis (plot): about 160 mm ripples at – 60 C – qualitative agreement

3.) Novel Structures: replace glue pillars; micromechanical engineering

Physics Studies

study effect of different detector geometries (thickness, position, number of layers)

on physics performance using MC tools: JAS (00 software being developed at SLAC), SGV

(e+e- → Zh, e+e- → Zhh):
stronger dependence on jet energy
than on angle between the jets

➤Study of impact parameter resolution:

larger beam-pipe radius: worse resolution

Summary and Outlook

Sensor development:

- > Excellent standalone performance of our first CPCCD and readout chip
- > First signals obtained from wire-bonded assembly: major milestone reached
- > Tests on bump-bonded assembly about to commence

Thin ladder R&D:

- > qualitative agreement between measurements and FEA analysis of thinned Silicon with Beryllium support
- ➤ longer term: consider novel ideas → micromechanical engineering

Physics studies:

> develop existing flavour-tagging tools further and apply them to the ongoing studies of the influence of the detector geometry on physics performance