
Navigation Timing Studies
of the

ATLAS High-Level Trigger
Andrew Lowe

Royal Holloway,
University of London



The ATLAS Trigger/DAQ System

• Three-level trigger 
architecture

• LVL1 acts on data from a 
subset of the detectors

• LVL2 uses full-precision 
data from most detectors, 
but only examines “RoI”
– Latency = 10 ms

• EF uses full event data 
and decides which events 
are recorded for offline 
analysis
– Latency = 1 s



The High-Level Trigger Software

• The HLT (LVL2 + EF) operates on events that 
pass LVL1

• Boundary between LVL2 and EF is flexible to 
allow a trade-off of tasks between them, in order 
to optimise their roles

• HLT software will be the control and selection 
software which:
– Runs in the online system for data-taking and testing
– Runs in the offline software for development 

(particularly of algorithms) and efficiency/rate studies



The Navigation

• Navigation is part of the mechanism by which 
the reconstruction is guided to the event 
fragments needed from preparing the trigger 
decision

• Require that the time spent doing the navigation 
is less than 1% of the total time taken for 
algorithm execution (~10 ms)

• HLT selection algorithms are the data-
processing components of the trigger software



Test Algorithm
• Test algorithm inherits from a base 

class that is common to all HLT 
selection algorithms

• Base class contains “helper methods” 
that have been written to simplify 
navigation

• Methods are responsible for 
interactions with the store, which holds 
both run and event related data

• The test algorithm does most of the 
actions that real HLT selection 
algorithms do

Base class

Test algorithm



TriggerElements 
And Their History Objects

• Steering system responsible for ordering algorithm 
processing

• Objects of the class “TriggerElement” are used by the 
steering to steer the event processing

• Hold no data – but are related to data objects, and to 
each other, in a navigable way by means of relationship 
labels that are stored in the TriggerElement’s “history” 
object

• Implementation of history object:
– Map relationship labels (string keys) to objects
– “Hash multimap” provides optimal implementation:

• Constant retrieval time
• Typically faster than sorted containers that map keys to objects



Electron Trigger Example

LVL1 RoI

Calo cluster

Track

LVL2
calo clustering

algorithm

LVL2
track finding

LVL2
electron

hypothesis

Starting
seed



The Seeding Mechanism

Tim
e
à



Navigation Helper Methods
• Important factors in determining the time taken to do the 

navigation:
– Time taken to retrieve objects from a TriggerElement’s history
– Time taken to write objects to a TriggerElement’s history

• Helper methods provided by HLT algorithm base class:
– writeHistoryOfTE

• Write an object, or a vector of objects, to a TriggerElement’s history 
and attaches a label describing the relationship between the two, 
e.g., “uses”, “seeded by”, “excludes”

– getVectorOfObject
• Retrieves a vector of objects, that match a specific label, from a 

TriggerElement’s history

• These methods were timed



Factors Thought To Be Important 
In Determining Navigation Time

• Time taken to retrieve and to write objects to 
histories may depend on:
– The size of the history object, i.e., the number of 

elements in the container
• Are history objects with many objects slower to access than 

those with few objects?
– The entry order of the object in the history

• By definition, this type of container gives a constant retrieval
time – expect size of history and entry order have no effect 
on retrieval time

– The number of objects being retrieved
• Obviously, one would expect the time taken to increase with 

the number of object being retrieved

• Vary these and make timing measurements



Tools And Method
• Timing measurements were performed using a package 

that contains an algorithm that collects the time 
information, using the CPU clock, and enters it into an 
ntuple

• The units of the ntuples (and the plots presented here) 
are milliseconds

• Dedicated machine was used
– Intel Xeon 2.40 GHz, 512 kb cache

• 100 events for each measurement
• To time a section of code, we need only add a statement 

before and after that starts and stops the timer
• We write 25 dummy TriggerElements to a history object, 

including one TriggerElement with a unique label



Retrieval Time: 
Size Of History

• As expected, the size of the history object (the number of 
elements within the hash multimap) has no effect on the 
retrieval time



Retrieval Time:
Entry Order In History

• The order in which the objects were written does not 
affect the time taken to retrieve the object with the 
unique label



Retrieval Time:
Number Of Objects Retrieved

• As one might expect, the time taken to retrieve objects 
increases linearly with the number of objects being 
retrieved



Writing Time:
Entry Order In History

• There time taken to write an object is independent of the 
number of objects already written, but the first write 
takes longer



Effect Of Dynamic Cast

• This unusual feature 
was traced to a line of 
code that performs a 
dynamic cast

• If the dynamic cast is 
done beforehand, the 
feature disappears

• Probably due to 
caching



Results

• Mean retrieval time = 0.023 ms
• Mean writing time = 0.021 ms
• Typically we expect about two writes and 

retrievals during navigation
• Expect the navigation to take about 0.1 ms
• This is about 1% of the time taken to execute 

real HLT selection algorithms
• This indicates that the navigation imposes a very 

small overhead on algorithm execution
• This meets the goal stated previously


