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The ATLAS Trigger/DAQ System

• Three-level trigger 
architecture

• LVL1 acts on data from a 
subset of the detectors

• LVL2 uses full-precision 
data from most detectors, 
but only examines “RoI”
– Latency = 10 ms

• EF uses full event data 
and decides which events 
are recorded for offline 
analysis
– Latency = 1 s



The High-Level Trigger Software

• The HLT (LVL2 + EF) operates on events that 
pass LVL1

• Boundary between LVL2 and EF is flexible to 
allow a trade-off of tasks between them, in order 
to optimise their roles

• HLT software will be the control and selection 
software which:
– Runs in the online system for data-taking and testing
– Runs in the offline software for development 

(particularly of algorithms) and efficiency/rate studies



The Navigation

• Navigation is part of the mechanism by which 
the reconstruction is guided to the event 
fragments needed from preparing the trigger 
decision

• Require that the time spent doing the navigation 
is less than 1% of the total time taken for 
algorithm execution (~10 ms)

• HLT selection algorithms are the data-
processing components of the trigger software



Test Algorithm
• Test algorithm inherits from a base 

class that is common to all HLT 
selection algorithms

• Base class contains “helper methods” 
that have been written to simplify 
navigation

• Methods are responsible for 
interactions with the store, which holds 
both run and event related data

• The test algorithm does most of the 
actions that real HLT selection 
algorithms do

Base class

Test algorithm



TriggerElements 
And Their History Objects

• Steering system responsible for ordering algorithm 
processing

• Objects of the class “TriggerElement” are used by the 
steering to steer the event processing

• Hold no data – but are related to data objects, and to 
each other, in a navigable way by means of relationship 
labels that are stored in the TriggerElement’s “history” 
object

• Implementation of history object:
– Map relationship labels (string keys) to objects
– “Hash multimap” provides optimal implementation:

• Constant retrieval time
• Typically faster than sorted containers that map keys to objects
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The Seeding Mechanism
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Navigation Helper Methods
• Important factors in determining the time taken to do the 

navigation:
– Time taken to retrieve objects from a TriggerElement’s history
– Time taken to write objects to a TriggerElement’s history

• Helper methods provided by HLT algorithm base class:
– writeHistoryOfTE

• Write an object, or a vector of objects, to a TriggerElement’s history 
and attaches a label describing the relationship between the two, 
e.g., “uses”, “seeded by”, “excludes”

– getVectorOfObject
• Retrieves a vector of objects, that match a specific label, from a 

TriggerElement’s history

• These methods were timed



Factors Thought To Be Important 
In Determining Navigation Time

• Time taken to retrieve and to write objects to 
histories may depend on:
– The size of the history object, i.e., the number of 

elements in the container
• Are history objects with many objects slower to access than 

those with few objects?
– The entry order of the object in the history

• By definition, this type of container gives a constant retrieval
time – expect size of history and entry order have no effect 
on retrieval time

– The number of objects being retrieved
• Obviously, one would expect the time taken to increase with 

the number of object being retrieved

• Vary these and make timing measurements



Tools And Method
• Timing measurements were performed using a package 

that contains an algorithm that collects the time 
information, using the CPU clock, and enters it into an 
ntuple

• The units of the ntuples (and the plots presented here) 
are milliseconds

• Dedicated machine was used
– Intel Xeon 2.40 GHz, 512 kb cache

• 100 events for each measurement
• To time a section of code, we need only add a statement 

before and after that starts and stops the timer
• We write 25 dummy TriggerElements to a history object, 

including one TriggerElement with a unique label



Retrieval Time: 
Size Of History

• As expected, the size of the history object (the number of 
elements within the hash multimap) has no effect on the 
retrieval time



Retrieval Time:
Entry Order In History

• The order in which the objects were written does not 
affect the time taken to retrieve the object with the 
unique label



Retrieval Time:
Number Of Objects Retrieved

• As one might expect, the time taken to retrieve objects 
increases linearly with the number of objects being 
retrieved



Writing Time:
Entry Order In History

• There time taken to write an object is independent of the 
number of objects already written, but the first write 
takes longer



Effect Of Dynamic Cast

• This unusual feature 
was traced to a line of 
code that performs a 
dynamic cast

• If the dynamic cast is 
done beforehand, the 
feature disappears

• Probably due to 
caching



Results

• Mean retrieval time = 0.023 ms
• Mean writing time = 0.021 ms
• Typically we expect about two writes and 

retrievals during navigation
• Expect the navigation to take about 0.1 ms
• This is about 1% of the time taken to execute 

real HLT selection algorithms
• This indicates that the navigation imposes a very 

small overhead on algorithm execution
• This meets the goal stated previously


