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Overview

• A very brief overview of calculating physical observables and
scattering amplitudes.

• Highlight the source of infrared (IR) singularities.

• Discuss ways of avoiding such IR singularities, IR finite
scattering amplitudes.

• An example demonstrating IR finite scattering amplitudes in the
calculation of the total cross section for e+e− → 2 Jets at NLO.
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Calculation of physical observables

• The aim of theoretical calculations is to produce predictions of the
physical observables measured in experiments.

• This is achieved by integrating over the phase space with the
amplitude “squared” times some definition function for the
physical observable being calculated,

∫
dLips|A|2 × J(ki, ...)

• The important part here is the matrix element A, this is calculated
from the S-Matrix,

A = 〈out|S|in〉

• The S-Matrix maps the basis of the initial states onto the final
states and contains all the details of the interactions.
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The S-Matrix

• Scattering calculations are performed by calculating the overlap of
an initial and final eigenstate of the full Hamiltonian, H,

〈Ψout(∞)|Ψin(−∞)〉 = 〈Ψout|U(∞, t′)U †(−∞, t′)|Ψin〉 = 〈Ψout|S|Ψin〉

• To calculate this we usually place it in the interaction picture,

〈Ψout|UH0
(∞, t′)U †

H0
(∞, t′)SUH0

(−∞, t′)U †
H0

(−∞, t′)|Ψin〉
= 〈ψI

out|SI |ψI
in〉

• The in and out fields are now eigenstates of the free Hamiltonian,
H0.

• The S-Matrix now evolves in time with the interaction
Hamiltonian, HI = H −H0.

• For this transformation to be valid the interaction must “turn off”
at infinity.
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Infrared divergences

• The S-Matrix is then expanded perturbatively in terms of some
parameter α.

• At each order in the time ordered perturbative expansion we
have terms of the form,

αn

∫ ∞

−∞

dt1HIe
−it1(Ef−Ea1

)...

∫ tn−1

−∞

dtnHIe
−itn(Ean−Ei)

• For the perturbative expansion to make sense these time integrals
must converge. [P.P.Kulish & L.D.Faddeev Theor.Math.Phys. 4, 745 (1970)]

• For the interaction to “turn off” we require exp(−it1(Ef −Ea1
)) to

vanish at t1 → ±∞, this is usually achieved by using an adiabatic
factor.

• We can quickly see though that if Ef −Ea1
= 0, then

exp(−it1(Ef − Ea1
)) → 1 and this integral will in fact diverge.
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The appearance of infrared divergences

• Situations where Ef − Ea1
= 0 can occur are,

◦ Soft emission, Ep−k +Ek −Ep → 0 as Ek → 0,

Ef = Ek +Ep−kEa1
= Ep

◦ Collinear emission,
Ep−k + Ek −Ep → (1 − λ)Ep + λEp − Ep = 0 as Ek → λEp,

Ef = Ek +Ep−kEa1
= Ep

• These divergences will only appear when the particles involved
are “on-shell”, so IR divergences will only appear in initial and
final states (as internal particles are “off-shell” ).

• States at infinity are not free and well separated. The interaction
does not “turn off”.
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So whats going on?

• The problem is that the energy of the states |p, k〉Ek→0,Ek→λEp
is

degenerate with those of |p〉.
• By assuming that the in and out states are eigenstates of H0 we

mistakingly split up states that “look” the same.

• A possible solution is to use asymptotic states that are
eigenstates of the asymptotic Hamiltonian, HA = H0 +HIR,
these combine H0 states with the same energy into one state.

|{p}〉 ≡ +

• We can do this by switching to the asymptotic interaction
picture. The in and out states then become asymptotic states.

• Energy is now an eigenvalue of the asymptotic Hamiltonian HA

and Ef −Ea1
6= 0 as the state 〈{f}| 6= 〈{a1}|, leading to a finite

result as degenerate states are no longer separate.
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Infrared finite scattering amplitudes

• Problem! this is very hard to do. We need to solve for the
eigenstates of HA, which we do not know how to do.

• Instead, perform a different unitary transformation on the
S-Matrix. Changing into the asymptotic interaction picture
involves,

A = 〈ψI
out|UHA−H0

U
†
HA−H0

SIUHA−H0
U

†
HA−H0

|ψI
in〉 = 〈ψA

out|SA
A |ψA

in〉

Instead remain in the interaction picture but alter the S-Matrix,

A= 〈ψI
out|U †

HA−H0
SIUHA−H0

|ψI
in〉 = 〈ψI

out|SI
A|ψI

in〉

• Physical observables remain unaltered by this transformation as∫
|A|2 ≡

∫
|A|2, only the amplitudes change.

• The amplitudes, A, are called infrared finite scattering
amplitudes and it is known that these are are also free of IR
singularities. [J.Frenkel et.al. Nucl. Phys. B194, 172 (1982) and others]
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How does this work?

• IR finite scattering amplitudes differ from the usual approach by
the basis of states used,
◦ The S-Matrix usually acts on the complete basis of H0 states

including the degenerate states.
◦ The SA-Matrix acts on a reduced basis of H0 states that

does not include any of the soft or collinear states. So the
amplitude is finite.

• So we can use our knowledge of energy eigenstates of H0 to
produce amplitudes that are free of IR divergences.

• There is one problem, unlike in the usual case where [S,H0] = 0,
IR finite scattering amplitudes use SA and [SA,H0] 6= 0 and so
we do not expect the amplitude to contain a single energy
conserving delta function.
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An example: e+e− → 2 Jets at NLO

• Check that IR finite scattering amplitudes give the correct
answer for e+e− → 2 Jets at NLO. [Forde & Signer Nucl. Phys. B684 125,

(2004), arXiv:hep-ph/0311059]

• We choose a definition of SA that removes all the singularities in
the three point vertex. This once chosen is general for all
processes involving three point vertices.

• There are two amplitudes which will contribute to this process.
◦ A({q(p1),q̄(p2)};γ), which has one incoming photon and two

outgoing “quarks” .
◦ A({q(p1),q̄(p2),g(p3)}; γ), has one incoming photon, two

outgoing “quarks” and one outgoing “gluon” .

• They will both be IR finite unlike the usual technique.
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An example: e+e− → 2 Jets at NLO

• Unlike the normal situation we do not want to calculate this
directly, instead we rewrite the amplitude as,

〈f |SA|i〉 ≡ 〈f |U †
HA−H0

SUHA−H0
|i〉 = 〈{f}|S|{i}〉

• So the amplitudes can be split up into sub-amplitudes as,

A({f}; {i}) = 〈{f}|S|{i}〉=
∑

x

〈f |U †
HA−H0

|x〉
︸ ︷︷ ︸

〈x|S|γ〉︸ ︷︷ ︸
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IR free amplitudes atO(g2) for e+e− → 2 Jets at NLO

• A({q(p1), q̄(p2)}; γ) is made up of seven sub-amplitudes.
• The first pair of sub-amplitudes is given by the self-interaction

terms, one for each leg,

A(0)

p1

p2

q3

q1

q2

α
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IR free amplitudes atO(g2) for e+e− → 2 Jets at NLO

• A({q(p1), q̄(p2)}; γ) is made up of seven sub-amplitudes.
• The second pair of sub-amplitudes is given by the 1-gluon

exchange diagrams, one for each time ordering,

A(0)

p1

p2

q1

q2

q3 α
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IR free amplitudes atO(g2) for e+e− → 2 Jets at NLO

• A({q(p1), q̄(p2)}; γ) is made up of seven sub-amplitudes.
• The fifth sub-amplitude is given by the usual virtual correction

term,

A(2)

p1

p2

q1

q2

α
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IR free amplitudes atO(g2) for e+e− → 2 Jets at NLO

• A({q(p1), q̄(p2)}; γ) is made up of seven sub-amplitudes.
• The final pair of sub-amplitudes is given by the two 3-particle cut

diagrams,

A(1)

p1

p2

q1

q2

q3
α
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An IR Finite Amplitude

• We can now combine these sub-amplitudes together.

• All the infrared singular pieces cancel between the
sub-amplitudes, leaving an infrared finite amplitude,

A({q(p1), q̄(p2)}; γ) =
(

1 + CF

(αs

2π

)(
g1(∆) + g2(∆) + g3(∆) − 4 +

π2

12

))

A(0)(q(p1), q̄(p2); γ(P ))

+(−ie) δij 〈p1|γα|p2〉(2π)(D−1)δ(D−1)(~P − ~p1 − ~p2)∫
dq̃3

(
f1(p1, p2, q3)δ(

√
S − ω(~p1) − ω(~p2)) + f2(p1, p2, q3)

+f3(p1, p2, q3)
)
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A Cross Section Calculation

• Using the two IR finite amplitudes, A({q(p1), q̄(p2)}; γ) and
A({q(p1), q̄(p2), g(p3)}; γ), we can calculate the total cross
section for e+e− → 2 Jets at NLO.

• The cross sections are,

σ{qq} = |A({q(p1), q(p2)}; γ)|2

=

�

1 + CF

αs

π

�

−
1

2
+ log 4 −

3

2
log

�
∆

2

�

− log2

�

∆

2
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,

σ{qqg} = |A({q(p1), q(p2), g(p3)}; γ)|2

= CF

� αs

π

�

�

5

4
− log 4 +

3

2
log

�

∆

2

�

+ log2

�

∆

2

� �

.

• Adding these two pieces together gives,
1

σ0
σ =

1

σ0

(
σ{qq}+σ{qqg}

)
=
(
1 +

αs

π
+ O(α2

s)
)

the same as the usual result given by σ = σqq + σqqg.
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Conclusion

• Given a very brief overview of infrared singularities

• Shown how IR finite amplitudes can be produced.

• Shown how this technique can be applied to an example process,
e+e− → 2 Jets at NLO, producing the known result but using
amplitudes that are free of IR singularities.

• Future work,
◦ Develop the technique for direct calculations of IR finite

amplitudes without the intermediate sub-amplitudes.
◦ Develop techniques to calculate physical observables from

these amplitudes.
◦ ...
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