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Overview

® A very brief overview of calculating physical observables and
scattering amplitudes.

® Highlight the source of infrared (IR) singularities.

® Discuss ways of avoiding such IR singularities, IR finite
scattering amplitudes.

®* An example demonstrating IR finite scattering amplitudes in the
calculation of the total cross section for ete— — 2 Jets at NLO.
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Calculation of physical observables

®* The aim of theoretical calculations is to produce predictions of the
physical observables measured in experiments.

® This is achieved by integrating over the phase space with the
amplitude “squared” times some definition function for the
physical observable being calculated,

/sz'ps|A\2 x J(ki,...)

® The important part here is the matrix element A, this is calculated
from the S-Matrix,

A = (out|S|in)

®* The S-Matrix maps the basis of the initial states onto the final
states and contains all the details of the interactions.
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The S-Matrix

® Scattering calculations are performed by calculating the overlap of
an initial and final eigenstate of the full Hamiltonian, H,

(Wout(00)|Win(—00)) = <\Ijout‘U(Ooat/)UT(_OOvt/)lqu’n> = (Yout|S|Vin)

® To calculate this we usually place it in the interaction picture,
(¥ ot |Urro (00, ) Uy (00, ') SUp, (—00, t') U}y (—00,)|Wiy)
= (YoutlS” [¥in)
® The in and out fields are now eigenstates of the free Hamiltonian,
Hy.

® The S-Matrix now evolves in time with the interaction
Hamiltonian, H;, = H — H,.

® For this transformation to be valid the interaction must “turn off”
at infinity.

loP HEPP Talk - April 2004 — p. 4/15



Infrared divergences

® The S-Matrix is then expanded perturbatively in terms of some
parameter «.

® At each order in the time ordered perturbative expansion we
have terms of the form,

©. @) tn—l

o' / dtlHje_itl(Ef_Eal)... / dthje_it”(Ean_Ei)

— 00 — 00

® For the perturbative expansion to make sense these time integrals
must converge. [P.P.Kulish & L.D.Faddeev Theor.Math.Phys. 4, 745 (1970)]

® For the interaction to “turn off” we require exp(—iti(E; — E,,)) tO
vanish at t; — 400, this is usually achieved by using an adiabatic
factor.

® We can quickly see though that if £ — E/,, = 0, then
exp(—it1(Es — E,,)) — 1 and this integral will in fact diverge.

loP HEPP Talk - April 2004 — p. 5/15



The appearance of infrared divergences

® Situations where Ey — E,, = 0 can occur are,
© Soft emission, E,_, + E, — E, — 0as E;, — 0,

E,, = E, < ‘\N\’\CN\N E; = Ey+ E,_y

© Collinear emission,
E, v+E,—E,—-(1-\NE,+\E,—E,=0as E, — \E,,

18, = 185 > OISy By = B + By

®* These divergences will only appear when the particles involved
are “on-shell”, so IR divergences will only appear in initial and
final states (as internal particles are “off-shell”).

® States at infinity are not free and well separated. The interaction
does not “turn off”.
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So whats going on?

® The problem is that the energy of the states |p, k) g, —0,E,—)E, IS
degenerate with those of [p).

® By assuming that the in and out states are eigenstates of Hy we
mistakingly split up states that “look” the same.

® A possible solution is to use asymptotic states that are
eigenstates of the asymptotic Hamiltonian, H4 = Hy + H|R,
these combine H| states with the same energy into one state.

{p}) = : e

® We can do this by switching to the asymptotic interaction
picture. The in and out states then become asymptotic states.

® Energy is now an eigenvalue of the asymptotic Hamiltonian H 4
and £y — E,, # 0 as the state ({ f}| # ({a1}|, leading to a finite
result as degenerate states are no longer separate.
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Infrared finite scattering amplitudes

® Problem! this is very hard to do. We need to solve for the
eigenstates of H 4, which we do not know how to do.

® |nstead, perform a different unitary transformation on the
S-Matrix. Changing into the asymptotic interaction picture
Involves,

A= <¢(€ut|UHA—HOU};A—HQSIUHA_HOU;IA—HO|¢{n> — <¢?Ut|sﬁ|¢£7’>

Instead remain in the interaction picture but alter the S-Matrix,
A: <¢£ut‘U}L{A—HOSIUHA—HO|¢7ZIn> — <¢£ut|szl4|¢z[n>

® Physical observables remain unaltered by this transformation as
[1A]* = [ |A]?, only the amplitudes change.

®* The amplitudes, A, are called infrared finite scattering
amplitudes and it is known that these are are also free of IR
singularities. [J.Frenkel et.al. Nucl. Phys. B194, 172 (1982) and others]
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How does this work?

® IR finite scattering amplitudes differ from the usual approach by
the basis of states used,

© The S-Matrix usually acts on the complete basis of H, states
iIncluding the degenerate states.

° The S4-Matrix acts on a reduced basis of H, states that
does not include any of the soft or collinear states. So the
amplitude is finite.

® So we can use our knowledge of energy eigenstates of H to
produce amplitudes that are free of IR divergences.

® There is one problem, unlike in the usual case where [S, Hy| = 0,
IR finite scattering amplitudes use S, and [S 4, Hy] # 0 and so
we do not expect the amplitude to contain a single energy
conserving delta function.
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An example: eTe~ — 2 Jets at NLO

®* Check that IR finite scattering amplitudes give the correct
answer for ete~ — 2 Jets at NLO. [Forde & Signer Nucl. Phys. B684 125,
(2004), arXiv:hep-ph/0311059]

®* We choose a definition of S4 that removes all the singularities in
the three point vertex. This once chosen is general for all
processes involving three point vertices.
® There are two amplitudes which will contribute to this process.
° A({q(p1),q(p2)};7), which has one incoming photon and two
outgoing “quarks”.
° A({g(p1),q(p2).9(ps)};v), has one incoming photon, two
outgoing “quarks” and one outgoing “gluon”.

® They will both be IR finite unlike the usual technique.
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An example: eTe~ — 2 Jets at NLO

®* Unlike the normal situation we do not want to calculate this
directly, instead we rewrite the amplitude as,

(f1Sali) = (FIUY; . s SUn—m,3) = ({f}SI{i})

® So the amplitudes can be split up into sub-amplitudes as,

\ 7

ALY ) = SN =Y (fIUL g, |2) (=IS]y)
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IR free amplitudes at O(g*) forete™ — 2 Jets at NLO

* A({q(p1),q(p2)};7) is made up of seven sub-amplitudes.

® The first pair of sub-amplitudes is given by the self-interaction
terms, one for each leg,
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IR free amplitudes at O(g*) forete™ — 2 Jets at NLO

* A({q(p1),q(p2)};7) is made up of seven sub-amplitudes.

® The second pair of sub-amplitudes is given by the 1-gluon
exchange diagrams, one for each time ordering,
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IR free amplitudes at O(g*) forete™ — 2 Jets at NLO

* A({q(p1),q(p2)};~) is made up of seven sub-amplitudes.

®* The fifth sub-amplitude is given by the usual virtual correction
term,
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IR free amplitudes at O(g*) forete™ — 2 Jets at NLO

* A({q(p1),q(p2)};7) is made up of seven sub-amplitudes.

®* The final pair of sub-amplitudes is given by the two 3-particle cut
diagrams,
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An IR Finite Amplitude

® We can now combine these sub-amplitudes together.

® All the infrared singular pieces cancel between the
sub-amplitudes, leaving an infrared finite amplitude,

A({a(p1),q(p2)};7) =

<1+CF (%) (91(A)+92(A)+93(A) — A L )

2T 12

D q(p1), a(p2); 1(P))
(=€) 55 (p1 |y [p2)(2m) P~ 1)5<D V(P —py — pb)

/da?) (fl(p1,p2,Q3)5(\FS—w(ﬁl) —w(ﬁ2)) (Pl P2,C]3)

+f3(p17p27 qS))
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A Cross Section Calculation

® Using the two IR finite amplitudes, A({q(p1), g(p2)};~) and
A({q(p1),q(p2),9(p3)};~), we can calculate the total cross
section for ete™ — 2 Jets at NLO.

® The cross sections are,

s = [ M@, aw)}i)P

Qs 1 3 A 5 (A

Ty = [ AUa@). @) 9pe) I

Qs 5 3 A 5 (A
= Cp (7) (Z—logél—l—glog (5>—|—log (5)>

® Adding these two pieces together gives,

1 1 Ol
(O{QG}+U{QG9}) - (1 + — OW?))

_O' P —
(0X0) 00 T

the same as the usual result given by o = o,5 + 0454-
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Conclusion

® Given a very brief overview of infrared singularities
® Shown how IR finite amplitudes can be produced.

® Shown how this technique can be applied to an example process,
eTe” — 2 Jets at NLO, producing the known result but using
amplitudes that are free of IR singularities.

®* Future work,

© Develop the technique for direct calculations of IR finite
amplitudes without the intermediate sub-amplitudes.

© Develop techniques to calculate physical observables from
these amplitudes.
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