Analysis of the decay $B^{ \pm} \rightarrow K^{ \pm} \pi^{\mp} \pi^{ \pm}$ at the BABAR Experiment

IOP Particle Physics 2004
6th April 2004

Thomas Latham
University of Bristol
BABAR Collaboration

Introduction

- Present results from the completed analysis:
- Measurements of the exclusive branching fractions of $B^{ \pm}$ decays to $K^{ \pm} \pi^{\mp} \pi^{ \pm}$final states
- Introduce current work:
- Amplitude analysis of $B^{ \pm}$decays to the final state $K^{ \pm} \pi^{\mp} \pi^{ \pm}$

Physics Motivation

- $B^{ \pm}$decays to the final state $K^{ \pm} \pi^{\mp} \pi^{ \pm}$via intermediate resonances can be used to search for direct $C P$ violation
- Measurements of the branching fractions of the intermediate resonances can be compared with predictions from hadronic models (QCD Factorisation etc.), e.g.
- W. N. Cottingham, et al., J. Phys. G28 (2002) 2843
- M. Beneke and M. Neubert, Nucl. Phys. B675 (2003) 333-415
- C. Chiang et al., Phys. Rev. D 69 (2004) 034001
- R. Aleksan, et al., Phys. Rev. D 67 (2003) 094019
- Study of these decays can also help to clarify the nature of the resonances involved, not all of which are well understood

General Analysis Issues 1 - Kinematic Variables

- $e^{+} e^{-} \rightarrow \Upsilon(4 \mathrm{~S}) \rightarrow B \bar{B}$
- B produced almost at rest in $\Upsilon(4 \mathrm{~S})$ frame
- Use beam energy to improve resolution
- Energy and momentum conservation give:
$-\Delta E=E_{B}^{*}-E_{\text {beam }}^{*} \quad \rightarrow 0$ for signal
$-m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}} \rightarrow m_{B}$ for signal

General Analysis Issues 2 - Event Topology

- B produced almost at rest in $\Upsilon(4 \mathrm{~S})$ frame
- B decays are isotropic
- $q \bar{q}$ decay products can have considerable momentum
- Continuum (udsc) decays are jet-like
- Form a Fisher Discriminant of topological variables
- This is a linear combination of variables
- Gives greater separation between hypotheses than selecting on the variables alone

$B^{ \pm} \rightarrow K^{ \pm} \pi^{\mp} \pi^{ \pm}$Exclusive Branching Fraction Overview

- Investigate resonance composition
- Divide Dalitz Plot into regions
- Measure yields to each region
- Maximum Likelihood analysis with PDFs for $m_{E S}, \Delta E$, Fisher Parameterised separately for each region
- Then interpret yields in regions as BFs of resonances using coupled resonance model considering interferences as a systematic
- Dataset: 61 million $B \bar{B}$ pairs

Regions of the Dalitz Plot

Fit Variable Projection Plots

- Histograms shown are for Region I $\left(K^{* 0}\right)$
- Histograms have likelihood ratio cut on other two variables
- Fit projections: total background signal

Dalitz Plots

- Plots have likelihood ratio cut in ΔE \& Fisher
- Left-hand plot has signal-like cut in $m_{E S}$
- Right-hand plot has background-like cut in $m_{E S}$

Mass Projections

- Background subtracted projections of $m_{K \pi} \& m_{\pi \pi}$

Mass \& Helicity Angle Projection Plots

- Histograms have likelihood ratio cut
- Have been background subtracted \& efficiency corrected

Upper plots - Region I $\left(K^{* 0}\right)$; Lower Plots - Region V $\left(f_{0}(980)\right)$

The "higher $K^{* 0}$ " region

- Structure cannot be explained by any single resonance
- Up to $m_{K \pi}=1.6 \mathrm{GeV} / c^{2}$ shows similar structure to that observed on LASS for $K_{0}^{* 0}(1430)$
- D. Aston et al., Nucl. Phys. B296 (1988) 493

Branching Fractions

Channel	BF $\left(\times 10^{-6}\right)$	Errors $\left(\times 10^{-6}\right)$			
		Stat	Sys	Model	Interference
$K^{* 0} \pi^{+}, K^{* 0} \rightarrow K^{+} \pi^{-}$	10.3	± 1.2	± 0.7	${ }_{-2.5}^{+0.4}$	± 0.6
"higher $K^{* 0 \prime} \pi^{+}, K^{* 0} \rightarrow K^{+} \pi^{-}$	25.1	± 2.0	± 2.9	${ }_{-0.5}^{+9.4}$	± 4.9
$\overline{D^{0}} \pi^{+}, \overline{D^{0}} \rightarrow K^{+} \pi^{-}$	184.6	± 3.2	± 9.7	-	-
$\rho^{0} K^{+}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$	$3.9(<6.2)$	± 1.2	${ }_{-0.6}^{+0.3}$	${ }_{-3.2}^{+0.3}$	± 1.2
$f_{0}(980) K^{+}, f_{0} \rightarrow \pi^{+} \pi^{-}$	9.2	± 1.2	± 0.6	${ }_{-1.9}^{+1.2}$	± 1.6
"higher $f^{\prime \prime} K^{+}, f \rightarrow \pi^{+} \pi^{-}$	$3.2(<12)$	± 1.2	± 0.5	${ }_{-2.4}^{+5.8}$	± 1.5
Non resonant	$5.2(<17)$	± 1.9	${ }_{-2.8}^{+0.8}$	${ }_{-7.5}^{+3.3}$	± 6.4
$\chi_{c 0}^{0} K^{+}, \chi_{c 0}^{0} \rightarrow \pi^{+} \pi^{-}$	1.5	± 0.4	± 0.1	-	-

- Systematic errors are large since the exact nature of the contributions to the Dalitz Plot and their interferences are unknown
- "higher $K^{* 0 "}$ means any combination of $K_{0}^{* 0}(1430), K_{2}^{* 0}(1430), K_{1}^{* 0}(1680)$
- "higher f " means any combination of $f_{2}(1270), f_{0}(1370), f_{0}(1430)$

$B^{ \pm} \rightarrow K^{ \pm} \pi^{\mp} \pi^{ \pm}$Exclusive BF Conclusions

- Measured BFs with statistical significances $>5 \sigma$ for:
$-B^{ \pm} \rightarrow K^{* 0}(896) \pi^{ \pm}$
$-B^{ \pm} \rightarrow$ "higher $K^{* 0 "} \pi^{ \pm}$
$-B^{ \pm} \rightarrow f_{0}(980) K^{ \pm}$
$-B^{ \pm} \rightarrow \chi_{c 0} K^{ \pm}$
$-B^{ \pm} \rightarrow D^{0} \pi^{ \pm}$
- 90% CL upper limits for $B^{ \pm} \rightarrow \rho^{0} K^{ \pm}, B^{ \pm} \rightarrow$ "higher $f^{\prime \prime} K^{ \pm}$
- First tight limit on non-resonant contribution
- $K^{* 0}(896)$ result larger than expected by QCD factorization
- Analysis documented in hep-ex/0308065 and submitted to Physical Review D

Amplitude Analysis

- Greater statistics should allow the possibility of a more thorough treatment:
- Full Dalitz Plot, or Amplitude Analysis
- Complete treatment of interferences between the various resonances - should greatly reduce the large systematic uncertainties on the results for the sub decay modes
- Measure amplitude magnitudes and phases \rightarrow Branching Fractions, Charge Asymmetries and $C P$ violation parameters
- This is what we are working on at the moment.
- Sian will tell you more in the next talk...

