Analysis of the decay $B^\pm \to K^\pm \pi^\mp \pi^\pm$ at the *BABAR* Experiment

IOP Particle Physics 2004 6th April 2004

Thomas Latham
University of Bristol
BABAR Collaboration

2

Introduction

- Present results from the completed analysis:
 - Measurements of the exclusive branching fractions of B^{\pm} decays to $K^{\pm}\pi^{\mp}\pi^{\pm}$ final states
- Introduce current work:
 - Amplitude analysis of B^\pm decays to the final state $K^\pm\pi^\mp\pi^\pm$

Physics Motivation

- B^{\pm} decays to the final state $K^{\pm}\pi^{\mp}\pi^{\pm}$ via intermediate resonances can be used to search for direct CP violation
- Measurements of the branching fractions of the intermediate resonances can be compared with predictions from hadronic models (QCD Factorisation etc.), e.g.
 - W. N. Cottingham, et al., J. Phys. G28 (2002) 2843
 - M. Beneke and M. Neubert, Nucl. Phys. ${f B675}$ (2003) 333-415
 - C. Chiang et al., Phys. Rev. D 69 (2004) 034001
 - R. Aleksan, et al., Phys. Rev. D 67 (2003) 094019
- Study of these decays can also help to clarify the nature of the resonances involved, not all of which are well understood

General Analysis Issues 1 - Kinematic Variables

- $e^+e^- \to \Upsilon(4S) \to B\overline{B}$
 - B produced almost at rest in $\Upsilon(4\mathrm{S})$ frame
- Use beam energy to improve resolution
- Energy and momentum conservation give:

$$-\Delta E = E_B^* - E_{beam}^* \longrightarrow 0$$
 for signal

$$-m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}} \rightarrow m_B$$
 for signal

General Analysis Issues 2 - Event Topology

- ullet B produced almost at rest in $\Upsilon(4S)$ frame
 - -B decays are isotropic
- $q\overline{q}$ decay products can have considerable momentum
 - Continuum (udsc) decays are jet-like
- Form a Fisher Discriminant of topological variables
 - This is a linear combination of variables
 - Gives greater separation between hypotheses than selecting on the variables alone

$B^{\pm} \to K^{\pm}\pi^{\mp}\pi^{\pm}$ Exclusive Branching Fraction Overview

- Investigate resonance composition
- Divide Dalitz Plot into regions
- Measure yields to each region
- Maximum Likelihood analysis with PDFs for m_{ES} , ΔE , Fisher Parameterised separately for each region
- Then interpret yields in regions as BFs of resonances using coupled resonance model considering interferences as a systematic
- Dataset: 61 million $B\overline{B}$ pairs

Fit Variable Projection Plots

- Histograms shown are for Region I (K^{*0})
- Histograms have likelihood ratio cut on other two variables
- Fit projections: total background signal

Dalitz Plots

- ullet Plots have likelihood ratio cut in ΔE & Fisher
- ullet Left-hand plot has signal-like cut in m_{ES}
- ullet Right-hand plot has background-like cut in m_{ES}

Mass Projections

ullet Background subtracted projections of $m_{K\pi}$ & $m_{\pi\pi}$

Mass & Helicity Angle Projection Plots

- Histograms have likelihood ratio cut
- Have been background subtracted & efficiency corrected

Upper plots - Region I (K^{*0}) ; Lower Plots - Region V $(f_0(980))$

The "higher K^{*0} " region

- Structure cannot be explained by any single resonance
- Up to $m_{K\pi}=1.6~{\rm GeV}/c^2$ shows similar structure to that observed on LASS for $K_0^{*0}(1430)$
 - D. Aston *et al.*, Nucl. Phys. **B296** (1988) 493

Branching Fractions

Channel	BF ($\times 10^{-6}$)	Errors ($\times 10^{-6}$)			
		Stat	Sys	Model	Interference
$K^{*0}\pi^+, K^{*0} \to K^+\pi^-$	10.3	±1.2	± 0.7	$^{+0.4}_{-2.5}$	±0.6
"higher K^{*0} " $\pi^+, K^{*0} \to K^+\pi^-$	25.1	±2.0	± 2.9	$+9.4 \\ -0.5$	± 4.9
$\bar{D^0}\pi^+, \bar{D^0} \to K^+\pi^-$	184.6	±3.2	± 9.7	-	-
$\rho^0 K^+, \rho^0 \to \pi^+ \pi^-$	3.9 (< 6.2)	±1.2	$^{+0.3}_{-0.6}$	$+0.3 \\ -3.2$	± 1.2
$f_0(980)K^+, f_0 \to \pi^+\pi^-$	9.2	±1.2	±0.6	$+1.2 \\ -1.9$	±1.6
"higher f " $K^+, f \to \pi^+\pi^-$	3.2 (< 12)	±1.2	± 0.5	$+5.8 \\ -2.4$	± 1.5
Non resonant	5.2 (< 17)	±1.9	$+0.8 \\ -1.8$	$+3.3 \\ -7.5$	± 6.4
$\chi_{c0}^0 K^+, \chi_{c0}^0 \to \pi^+ \pi^-$	1.5	±0.4	± 0.1	-	-

- Systematic errors are large since the exact nature of the contributions to the Dalitz Plot and their interferences are unknown
- "higher K^{*0} " means any combination of $K_0^{*0}(1430), K_2^{*0}(1430), K_1^{*0}(1680)$
- "higher f" means any combination of $f_2(1270), f_0(1370), f_0(1430)$

$B^{\pm} \to K^{\pm} \pi^{\mp} \pi^{\pm}$ Exclusive BF Conclusions

• Measured BFs with statistical significances $> 5\sigma$ for:

$$-B^{\pm} \rightarrow K^{*0}(896)\pi^{\pm}$$

$$-B^{\pm} \rightarrow \text{ "higher } K^{*0} \pi^{\pm}$$

$$-B^{\pm} \rightarrow f_0(980)K^{\pm}$$

$$-B^{\pm} \rightarrow \chi_{c0}K^{\pm}$$

$$-B^{\pm} \rightarrow D^0\pi^{\pm}$$

- 90% CL upper limits for $B^\pm \to \rho^0 K^\pm$, $B^\pm \to$ "higher $f'' K^\pm$
- First tight limit on non-resonant contribution
- $K^{*0}(896)$ result larger than expected by QCD factorization
- Analysis documented in hep-ex/0308065 and submitted to Physical Review D

Amplitude Analysis

- Greater statistics should allow the possibility of a more thorough treatment:
 - Full Dalitz Plot, or Amplitude Analysis
 - Complete treatment of interferences between the various resonances – should greatly reduce the large systematic uncertainties on the results for the sub decay modes
 - Measure amplitude magnitudes and phases \rightarrow Branching
 Fractions, Charge Asymmetries and CP violation parameters
- This is what we are working on at the moment.
- Sian will tell you more in the next talk...