Photodetectors for the LHCb RICH

Charlotte Newby, on behalf of LHCb pixel HPD group

• • Introduction

- Overview of experiment
 - LHCb
 - Ring Imaging Cherenkov Detectors (RICH)
 - Importance of particle identification
- Photodetectors for the RICH
 - Development of first 40 MHz prototype
 Hybrid Photon Detectors (HPDs)

LHCb Physics - an example B event

What do you want to know?

- o B decay length & momentum of decay products (and therefore proper time $t = \frac{mL}{pc}$)
- Was it a B or B? Tag by looking at lepton/K sign of other bhadron in event

• LHCb detector

• RICH detectors

RICH1 detector

RICH2 has CF₄ gas radiator for ID of high momentum tracks

 $3\sigma \pi$ - K separation for 3 < p < 80 GeV

Importance of Particle Identification

Allows decays of interest to be separated from other b-decay channels

Hybrid Photon Detector

Aim to produce first prototypes working at 40 MHz

HPD production Step 1:- The anode

- Silicon detector bump-bonded to readout chip
- Glued and wire bonded in ceramic carrier
- o 32×32 pixels

Silicon Sensor

1 photoelectron → 3000-5000 e-h pairs

Pixel Cell

Charge amplified, shaped & discriminated in each pixel→digital output

Select Good Readout Chips

Wafer Map

- Carry out threshold scan
 - Send test pulses to each pixel
 - S-curve for each pixel

Threshold defined at 50% efficiency

Narrow threshold spread across chip

Expected signals of 30-50 mV, threshold well below signal level

Chip Yield ~ 45%

Anode Assembly

- High Lead (90%Pb 10%Si) solder bumps deposited on readout chip
 - High melting point ~ 300 °C
- Has chip survived bumpbonding process?
- Test bond quality using ⁹⁰Sr source
- Poor results due to 'crust' on bump

Results from 1st batch

85.0%

'Crust' problem solved and not present in later batches

• Will the bump bonds survive?

- Packaging glue temperature ~ 400 °C
- Encapsulation & bake-out cycles @ 300 °C

The Answer – YES!

 Two prototype 40 MHz HPDs produced and tested in lab (Lisa's talk) and in test beam

HPD Test Beam

CERN, PS T9 Test beam area, east hall

10 GeV/c negative particles

Vessel

- UK RICH1 prototype
- Air rings

Triggering system

 4 scintillators coupled to PM tubes

HPD Test beam - online

display

- Cherenkov air rings
- LHCb readout mode (32×32 pixels)
- Alice mode readout (256×32)
- o 2 rings visible
 - What are the particles?

What are the particles?

	Expected θ_{C} (mrad)
electron	24.9
muon	22.5
pion	20.6
kaon	Below threshold
proton	Below threshold

	Measured θ_{C} (mrad)
Outer ring	24.83
Inner ring	20.02

Measured cherenkov photons from electrons and pions

• • Conclusions + future

- 2 working 40 MHz HPD prototypes were produced
- Both measured Cherenkov photons in testbeam
- HPDs were selected as the photodetector for the LHCb RICH
- Second batch of prototypes is being produced, before production starts in October
 - Results from second batch good so far