Heavy-Ion Physics @ LHC

The ALICE program

- Scientific objectives
- □ Strategy

RHIC + GSI

Scientific objectives of HI physics

- ☐ Study the OCD phase transition and the physics of the OGP state:
 - How to apply and extend the SM to a complex and dynamically evolving system of finite size;
 - Understand how collective phenomena and macroscopic properties emerge from the microscopic laws of elementary particle physics;
 - Answer these questions in the sector of strong interaction by studying matter under conditions of extreme temperature and density.

Quantitatively new regime

	SPS	RHIC	LHC	
vs _{NN} (GeV)	17	200	5500	X 28
dN _{ch} /dy	500	850	1500-8000	?
$ au_{QGP}^0$ (fm/c)	1	0.2	0.1	faster
T/T _c	1.1	1.9	3.0-4.2	hotter
ϵ (GeV/fm ³)	3	5	15-60	denser
$ au_{QGP}$ (fm/c)	=2	2-4	=10	longer
$\tau_{\rm f}$ (fm/c)	~10	20-30	30-40	
$V_f(fm^3)$	few 10 ³	few 10 ⁴	few 10 ⁵	bigger

Qualitatively new regime

- □ Thermodynamics of the QGP phase = Thermodynamics of massless 3-flavor QCD.
- Parton dynamics $(\tau_{QGP}/\tau_0>50-100)$ dominate the fireball expansion and the collective features of the hadronic final state.


```
\alpha_s(T)=4\pi/(18\log(5T/Tc))
```

$$m_u = m_d = m_s$$

 $m_u = m_d$
 $m_u = m_d$; $m_s > m_{u,d}$
HQ suppressed exp(-m_{c,b,t}/T)

Qualitatively new regime

- □ Probe initial partonic state in a novel Bjorken-x range (10⁻³-10⁻⁵):
 - nuclear shadowing,
 - high-density saturated gluon distribution.
- Larger saturation scale
 (O_S=0.2A^{1/6}ν s^δ= 2.7 GeV):
 evolution (non-linear ?) of a saturated gluon distribution which generates the bulk properties of the collision measured at mid-rapidity

Qualitatively new regime

- □ Hard processes contribute significantly to the total AA cross-section (shard/stot = 98%):
 - Bulk properties dominated by hard processes;
 - Very hard probes are abundantly produced.
- Weakly interacting probes become accessible (γ, Z⁰, W[±]).
- □ LHC will substantiate what RHIC cannot measure.

1+2 experiments

HI experiments

■ Which particle multiplicity to expect at LHC?

 \square ALICE optimized for $dN_{ch}/dY = 4000$, checked up to 8000 (reality factor 2).

ALICE: the dedicated HI experiment

- Measure flavor content and phase-space distribution event-by-event:
 - Most (2π * 1.8 units η) of the hadrons (dE/dx + ToF), leptons (dE/dx, transition radiation) and photons (high resolution EM calorimetry);
 - Muons at large rapidities $(2.5 < \eta < 4)$
 - Track and identify from very low (< 100 MeV/c; soft processes) up to very high p_t (~100 GeV/c; hard processes);
 - Identify short lived particles (hyperons, D/B meson) through secondary vertex detection;
 - Jet identification;

ALICE PID performances

ALICE PPR CERN/LHCC 2003-049

1+2 Experiments

QGP probes: hard processes modified by the medium

$$Q \gg \Lambda_{OCD}$$
, T , $Q_S \Rightarrow \Delta \tau$, $\Delta r \sim 1/Q$

- ☐ Jet tomography:
 - Energy degradation of leading hadrons, p_t dependence;
 - Modification of genuine jet observables;
 - Mass dependence of energy loss (light and heavy quarks).
- Dissolution of c'onium & b'onium bound states.

DIS of QGP: Jet tomography

Medium modified hadranization

hadronic final state

- □ does equilibration occur in the medium?
- □ are the degrees of freedom partonic or hadronic?

Verified at $p_T^{parton} > 10 \text{ GeV/c}$ ($p_T^{hadron} > 6 \text{ GeV/c}$)

Suppression of leading hadron

Nuclear modification factor (compare pp, pA and AA):

$$R_{AA}(p_{T},\mathbf{h}) = \frac{\frac{dN^{AA}}{dp_{T}}d\mathbf{h}}{\frac{dN^{NN}}{dp_{T}}d\mathbf{h}}$$

$$T_{AA}(b)\mathbf{s}_{NN}$$

$$\mathbf{s}_{AA}(b)$$

Jets reconstruction

☐ Jets are produced copiously.

Jet reconstruction

- □ Seed Energy: 4.6 GeV
- □ Minimum jet energy: 14 GeV
- □ Track p_T-cut: 2GeV/c

Jet quenching

Excellent jet reconstruction... but challenging to measure medium modification of its shape...

Medium induced redistribution of jet energy occurs inside cone.

 $E_t = 100 \text{ GeV}$ (reduced average jet energy fraction inside R):

- Radiated energy ~20%
- \blacksquare R=0.3 \triangle E/E=3%
- E, UE ~ 100 GeV

C.A. Salgado, U.A. Wiedemann hep-ph/0310079

Exclusive jets: Redistribution of jet energy

- Jet shape: distance R to leading particle;
- lacksquare p_{T} of particles for $R < R_{max}$;
- Multiplicity of particles for $R < R_{\text{max}}$;
- Heating: $k_T = p \times sin(\theta(particle, jet axis))$;
- Forward backward correlation: Δφ(particle, jet axis);
- Fragmentation function: $F(z)=1/N_j \times dN_{ch}/dz$ $z=p_t/p_{jet}$.

Requires high quality tracking down to low p_t.

$z=p_t/p_{et}$

Fragmentation functions

Direct photon identification

Predictions 2004

- Vs. = 5.5 TeV Pb + Pb 5 % Most Central Collisions All decay photons NLO pQCD : CTEQ5M + EKS98 + ELess - All scales 1 x p 📡 r* Decay Photons : K⊀P Direct Photons: EFG aut II 80 p_r (GeV/c)

Measurement after 1 HI year

Exclusive jets: Tagging

Birmingham

 \square Direct measurement of jet energy: γ , γ^* , Z^0

Heavy flavor quenching observables

- Inclusive:
 - Suppression of dilepton invariant mass spectrum (DD \rightarrow I+I-, BB \rightarrow I+I-, B \rightarrow D+ \rightarrow I+)I-
 - Suppression of lepton spectra
- Exclusive jet tagging:
 - High- p_T lepton (B? Dlv) & displaced vertex
 - Hadronic decay (ex. $D^0 \rightarrow K^-\pi^+$) & displaced vertex

D quenching $(D^0 \rightarrow K^-\pi^+)$

 \square Ratio D/hadrons (or D/ π^0) enhanced and sensitive to medium properties.

