

Results from investigations into the CMS physics channels $PP \rightarrow bbH(H \rightarrow \gamma\gamma)$

Dan Holmes, student at Bristol.

My Channels PP \rightarrow bbH, H $\rightarrow \gamma \gamma$

2 Main sorts of diag:

 $gg \rightarrow bbH(\gamma\gamma)$ and

 $qq \rightarrow bbH(\gamma\gamma)$

...contribution from gluon fusion about 1000X bigger than qq.

M_H and σ ?

- Used Spira's HQQ(1.1) and HDECAY(3.0) with NLO/LO K=1.6.
- For all cases (SM, MSSM), v. small signal: order 0.09 to 0.15 fB passing basic CMS acceptance.
- Only regions worth looking at are:
 - $-SM: M_H \sim 125GeV$
 - MSSM (H): M_H ~128, M_A ~108, tanβ~30
 - MSSM (h): M_H ~127, M_A ~144, tanβ~30

**"acceptance": require: PT γ 1>40, PT γ 2>25, PT jet(s)>20 GeV, bTag>0,1: $|\eta|s$ within fiducial regions. **

Backgrounds

first two backgrounds: used PYTHIA 6.205:

(1) $PP \rightarrow \gamma \gamma + radiation/PU$ of a jet(s)

etc...

(2) $PP \rightarrow jet(s) + radiation/faking/PU of \gamma\gamma$

- (1) order of 100 fB passing acceptance cuts (1000x signal!)
- (2) can be kept to <<fB by simple b-tagging cuts.

Optimising vs Pythia back

Ran samples through CMSJET, added PU.

...using cuts on: P_T of γs , jet(s), $P_T 1-P_T 2$, M_H , $P_T H$, b-tagging efficiency as well as topological cuts: eta, phi, deltaEta, deltaPhi of γs , jet(s), this was the best i could do:

channel	"significance" in Gaussian sigmas (LEP style) For 100fB ⁻¹ data.	Probability of 3σ observation	Probability of 5σ observation
SM: 1-tag	2.87 (s=1.70,b<0.085)	41.8%	17.5%
SM: 2-tags	< 1evt per 100 fb-1signal too small!!		
MSSM: h : 1-tag	3.68 (s=2.50,b<0.085)	63%	36.2%
MSSM: h : 2-tags	0.68 (s=1.00,b=2.56)	1.07%	0.0007%
MSSM: H : 1-tag	3.19 (s=2.00,b<0.085)	50.7%	24.4%
MSSM: H : 2-tag	0.40 (s=1.00,b=19.6)	0.28%	0.00006%

..so after looking at PYTHIA background, indication that there might be some chance of seeing 1-tag channels... ..but...

...uh oh.. MADEVENT backgrounds

MADGRAPH backgrounds

Made some more background (LO) processes using **MADEVENT**:

- (1) "Irreducible background": processes where hard scattering really makes bbγγ. About 0.5 fB pass basic acceptance.
- (2) "Light Jet background": where the hard scattering makes u's, d's etc. which then look like b jets. About 28 fB pass basic acceptance.

..but i can't find any signal significant regions !*##?*!

**acceptance (as before) require 2 \(\gamma \), 1 jet with btag

plots from a qq → γγgluglu PYT-MAD comparison

- PYT: 2 very similar PT γ (back to back) ...MAD shows PT ordering.
- MAD jj, much flatter PT spectrum.
- much harder to optimise against MAD topology.

..which all means...

- Using LO parton-lev gen, I can't find any regions of high signal significance anymore.. (actually can only just about beat the bbyy back..)
- I also looked at the COMPHEP bbyy and light jet+yy samples *made by Misha Dubinin ... also ALPGEN PhJet package ..both looked exactly the same as the MADEVENT ones.
- Did separate study of the γγ and γγjj backs produced buy PYTHIA and MADEVENT ..differences understood.

in summary...

- channel PP \rightarrow bbH($\gamma\gamma$)
- signal of order 0.09 to 0.15fB
- backgrounds of order 100, (28 + 0.5) fB
- (Fast) simulated using CMSJET + PU.
- Maybe there is some cut combination that will give you a signal significant region but i have not found it..
- if you do a channel with a $\gamma\gamma$ jj background, you'd better be careful how you make the background.