

A Search for the Z→bt Decay at DØ

presented by

Amber Jenkins Imperial College, London

Institute of Physics High Energy Particle Physics Conference Birmingham University, April 5-7 2004

Overview

- The DØ experiment in Run II
- Higgs searches at the Tevatron
- Why Z→bѢ?
- The power of the trigger
- Working offline
- Conclusions

The Fermilab Tevatron Collider

- Run II began in March 2001
 - ➤ Higher collision energy of 1.96 TeV
 - ➤ Higher luminosity (total of 2-9 fb⁻¹ for Run II)
 - Collisions every 396 ns
- Current integrated luminosity is 376 pb⁻¹
- Accelerator performing well

FERMILAB'S ACCELERATOR CHAIN

The Upgraded DØ Detector

- Completely new tracking system uses 2T magnetic field
- Inner Si vertex detector (SMT) provides b-tagging capability
- Excellent Run I calorimetry exploited in Run II
- Upgraded 3-tier trigger and data acquisition system

Higgs Searches at the Tevatron

- For a light Higgs (M_H below ~135 GeV) the dominant decay is $H \rightarrow b\overline{b}$
- This would be observed as a bb dijet mass peak on a massive QCD background continuum
- → b-tagging is essential in Higgs searches
- Jet energy scale and dijet mass resolution also crucial

Why is $Z \rightarrow b\overline{b}$ Important?

- $Z \rightarrow bb$ is an essential tool:
 - To calibrate the b-jet energy scale
 - jet energy scale error (6.5%) is the dominant systematic error on the top mass
 - For measurement of the b-jet energy resolution
 - we need to minimise di-b-jet mass resolution
 - \triangleright As a testbed for $H \rightarrow b\overline{b}$

Resolutions

b-jet Energy Resolution as a Function of p_T

- Cone jets provide better energy resolution than k_T jets
- Hard gluon radiation degrades jet resolution by up to10%

bb Dijet Mass Resolution

- Mass resolution worsens from parton to particle-jet to calorimeter-jet level
- Final state radiation degrades the mass resolution; but recombining gluon jets with parent b-jets can help

Finding $Z \rightarrow b\overline{b}$: The Strategy

• There are two main elements:

1. Online - design channel-specific triggers which keep interesting events while rejecting enough of the low-energy, high cross-section

background events

2. Offline - perform offline event selection on top of trigger conditions which optimise S/\sqrt{B}

→ Then collect data with our triggers, apply offline cuts and find a peak

Intelligent Triggers

- At a hadron collider triggering is critical
- Delicate balance between minimising rate saved to tape and maximising signal efficiency
- Challenge increases with luminosity
- DØ trigger system has 3 levels:
 - > Level 1 is hardware based, output rate is 5-10 kHz
 - Level 2 uses more refined info to reduce rate to 1 kHz
 - > Level 3 performs partial event reconstruction to write out 50 Hz to tape

Triggering on $Z\rightarrow b\overline{b}$

99.87 / 97 1122 ± 77.03

1.189 ± 0.04006

2356 ± 89.08

 χ^2 / ndf

- Currently limited by Level 2 output rate
- A Silicon Track Trigger at Level 2 is on its way
 - \Rightarrow For now, rely on μ + jet triggers for $Z \rightarrow b\overline{b}$
- Exploit the power of online b-tagging and other tools

1500

1000

500

Probability

2D IP significance, MU JT10 L2M0 IP, run 179621

2-D Signed

Impä∉t

- Systematically vary cuts to obtain optimum rate and efficiency combination
- Require a background rate of ~1-2 Hz with reasonable signal efficiency

Working Offline

- Once trigger is finalised, need to apply offline event selection on top of triggers
- Perform Monte Carlo studies on top of trigger selection
- Scan parameter space to see which cuts provide optimal discrimination power
 - Use offline b-tagging and other handles

Invariant masses, no jet energy scale corrections or triggers applied

Conclusions

- There is a wealth of physics opportunities at the Tevatron.
- Observing and measuring Z→bb at a hadron collider is important for Higgs, top, B physics and Jet Energy Scale and resolutions.
- Triggering is crucial. Z→bb triggers have been designed and will go online from April 2004.
- Expect ~200 signal events per day against a few 1000 background events. Need to be clever offline to optimise S/\sqrt{B} .
- Tevatron is performing well and Z→bb prospects look very promising.

Back-up Slides

Higgs Sensitivity Reach

Efficiency as a Function of b-tag Probability

Effect of the Trigger Upon Signal Invariant Mass

No jet energy scale corrections applied

Effect of the Trigger Upon Background Invariant Mass

No jet energy scale corrections applied